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Abstract: 

In this article, methods of modeling dynamic systems namely, Nonholonomic 

mechanics, Vakonomic mechanics and Chetaev methods for constrained dynamic 

system are investigated. The fact that Vakonomic mechanics gives a different motion 

equation to the other methods is verified using a particular example. It is shown that the 

three methods give the same motion equation for holonomic system. For nonholonomic 

system, the Vakonomic dynamics gives a different motion equation to the others. 

Moreover, Chetaev equation is proved without using Chetaev condition. A particular 

example is provided in verifying that Chetaev condition is not always valid. Finally, the 

reason why the Vakonomic mechanics gives a different motion equation in the case of 

nonholonomic system is scrutinized based on the definition of Vakonomic mechanics 

whose motion equation is obtained through a purely variational principle. An example is 

given to strengthen the arguments.  
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Introduction: 

The term, Borisov A.V. et al(2002), 

Manuel de León.(2012) “nonholonomic 

system” was coined by Hertz (1894). 

 

 Nonholonomic systems are,  mechanical 

systems with constraints on their velocities 

that are not derivable from position 

constraints.  
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Nonholonomic systems arise in mechanical 

systems that have rolling contact (rolling of 

wheels without slipping)  or certain kinds 

of sliding contact such as the sliding of 

skates. One of the first, Borisov A.V. et 

al(2002), discoveries by Hertz was that, the 

usual integral variational principles such as 

the principle of least action or Hamilton’s 

principle do not hold for nonholonomic 

systems. Moreover, Hertz has classified 

Lagrangian system with linear constraints 

into holonomic and nonholonomic 

according to whether the imposed 

constraints are holonomic or not.  

The motion equations resulting from 

classical nonholonomic mechanics using 

the LagrangeD’Alembert principle is not 

given in the form of a variational problem. 

That is, the motion of the nonholonomic 

system is not a critical point of any 

functional in the sense of the Calculus of 

Variations Kozlov (1983). 

In an attempt to circumvent this difficulty, 

Kozlov (1983), Arnold V.I.(1988), gives a 

variational formulation of constrained 

motion, calling the resulting equations of 

“variational axiomatic kind,” leading to the 

name “vakonomic.”  

One of the more interesting historical 

events Borisov A.V. et al(2002), Manuel de 

León.(2012), Абрамов Н.В. et al(2013), 

Bloch A.M.(2003) of nonholonomic 

systems is related to the paper by Korteweg 

(1899) .Up to that point there was some 

confusion in the literature between 

nonholonomic mechanical systems and 

variational nonholonomic systems. One of 

the purposes of Korteweg’s paper was to 

uncurl this misunderstanding. Accordingly 

the difference between nonholonomic and 

vakonomic dynamics relies in the different 

principle applied in both cases: 

- Nonholonomic dynamics is derived 

using the d’ Alembert principle. 

- Vakonomic dynamics is obtained 

using a variational principle looking 

for external curves among those 

satisfying the constraints. 

The motion equations resulting from 

vakonomic and classical nonholonomic 

mechanics are genuinely different from 

each other as is shown in Lewis 

et.al(1995). Moreover, Kozlov himself 

made it clear that the equations obtained 

through vakonomic dynamics and classical 

nonholonomic mechanics are the same in 

the case of holonomic constraints and for 

nonintegrable constraints, vakonomic 

mechanics gives a different motion 

equation Kozlov V.V.(1982a) to classical 

nonholonomic mechanics. 

In several articles Arnold V.I et al (1988), 

Lewis A. et.al (1995), Kozlov V.V.(1982a) 

the differences of motion equations 

resulting from vakonomic mechanics and 

classical nonholonomic mechanics are 

shown using experimentation of different 

particular examples. This paper gives a 

theoretical background showing that: 

1. The two mechanics give the same 

motion equations for holonomic 

systems. 

2. The two mechanics give different 

motion equations for first order 

linear nonholonomic systems. 

In addition, in several literatures, the reason 

why the two mechanics give different 

motion equations is not addressed. This 

paper gives an answer to: 

3.  The question “why do these 

methods give different motion 

equations?” is scrutinized.  

4. Moreover, in this paper, Chetaev 

equation is proved without using 

Chetaev condition. 

The organization of the paper is, in section 

2, motion equations resulting from 

nonholonomic mechanics, Chetaev method 

and vakonomic mechanics are revisited. A 

particular example showing that the 

vakonomic mechanics gives a different 

motion equation from that of 

nonholonomic mechanics and Chetaev 

method is given. In section 3, an 

investigation of vakonomic mechanics for 

the cases of holonomic constraints is made. 
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In section 4, Chetaev equation is proved 

without using Chetaev condition. An 

example where Chetaev condition doesn’t 

hold is provided. Moreover, the reason why 

vakonomic mechanics gives different 

equation of motions to nonholonomic 

mechanics is scrutinized.   

 

 

Nonholonomic and Vakonomic Dynamics Revisited 

Variational Principles for Constrained Systems 

Let  be a configuration manifold Абрамов Н.В. et al(2013), Bloch A.M (2003), with 

dimension  and  its tangent bundle. Denote by  the 

coordinates on  and by the induced coordinates on . Define the 

regular mechanical Lagrangian as: 

 : , where,  is the kinetic energy of 

the system,  is the potential energy of the system.   the set of real 

numbers. 

A set of twice differentiable curves connecting two given points  and  , denoted by 

, [a,b]), in    is define on an interval   as: 

, [a,b]) is 

a curve and  and is called the path space from  

to .(See Fig.1). 

 
This set is a differentiable infinite-dimensional manifold Bloch A.M (2003), Мухарлямов 

Р.Г. (2013).The tangent space to  , [a, b]) at curve , [a, b]) 

is given as : 

,[a,b]) is map
1
 and 

)}()( bXaX   
 

                                                           
1   is a map that takes a tangent vector  to the curve  at which the 

vector  is attached (that is   ).The inverse image of a curve  
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Since  is a tangent vector to the manifold we may write it as the 

tangent vector at  of a curve in ,  

 which passes through at , i.e. , as: 

 

Given the Lagrangian function, two fixed points and a fixed time 

interval , the associated action integral is the Мухарлямов Р.Г. (2013), Cortés J. 

(2002) real valued map given by: 

, [a, b])    defined by: 

 
Theorem1.Hamilton’s variation principles, Мухарлямов Р.Г. (2013). 

A curve   is a motion of the Lagrangian system defined by L if 

and only if  is a critical point of the action integral , (i.e.,  (c) = 0). 

2.2 Modeling Mechanical Systems 

Definition 1: A curve  , [a, b])  is called, Мухарлямов Р.Г. (2013),a 

critical point to the action integral  if  and only if  for every 

,[a,b]).  

It is convenient to write  as: 

 

Equation (2.3), using the end point conditions , the 

commutation    and method of integration by parts leads to: 

 

                                                                                                                                                   
under the natural projection  is the tangent space .One refers to    as an 

infinitesimal variation (the set of all virtual variations) of the curve   subject to fixed end-

points. Classically, the notation   is used. 
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, [a, b]) and . 

 

Note also that as can be seen from (2.4), 

the nonholonomic constrained variational 

problem does not immediately give the 

required equations of motion. This task is 

taken up in the following cases for 

nonholonomic and vakonomic mechanics 

in that order. 

 

Modeling Nonholonomic Mechanics 

In this section, we derive the equations of 

motion for nonholonomic systems subject 

to affine constraints. 

A nonholonomic Lagrangian, Lewis et 

al(1995), Мухарлямов Р.Г. (2013) system 

on a manifold Q consists of a pair  

 is the Lagrangian of the system and  is 

a submanifold of . 

The allowed velocities for the 

nonholonomic Lagrangian system are those 

belonging to . We assume  is an affine 

sub bundle modeled on a vector bundle . 

Being an affine, there exists a vectorfield 

 on  such that  if and only 

if The fulfilling, 

Мухарлямов Р.Г. (2013), of the 

constraints requires the introduction of 

some unknown reaction forces. In 

connection with the problem of eliminating 

this unknown character, it is customary to 

introduce the concept of virtual 

displacement. Let us consider a first order 

nonintegrable linear nonholonomic velocity 

constraint. In this case the constraints can 

be expressed in the form: 

 

 

 
 

In contrast to holonomic constraints, the 

nonintegrable constraint (2.5) directly 

restricts the kinematically possible 

velocities and therefore cannot be directly 

embedded in  in order to 

reduce the number  of generalized 

coordinates to independent 

coordinates. But since virtual 

displacements  coincide with possible 

displacements  in the limit of frozen 

constraints ( , they satisfies the 

linear set of conditions, 

 

 
This can be adjoined to expression (2.4) and results in: 

 



Ethiop.  J.  Educ.  &  Sc.                                          Vol.  11  No  1,   September,  2015   26 
 

 Where, are Lagrange multipliers  and 

 is Jacobian matrix of the constraints. The equation of motion 

including external forces  and the constraints is given by: 

 
If in instead of constraints defined by (2.5), the constraints are more generically defined by 

the vanishing of the set of  independent maps  

 , determine locally the nonlinear sub-

manifold ,then the Chetaev rule implies that the equations of motion for a constrained 

Lagrangian system, instead of (2.7), becomes: 

 
 

Equation (2.9) together with the constraint 

equations (2.5) is called Chetaev 

equations. 

Note that, in Chetaev equation the virtual 

displacement equation is given by the 

Chetaev condition:     in 

steady of (2.6). 

 

Modeling Vakonomic Mechanics 

The Lagrange-D’Alembert principle is not 

given in the form of a variational problem. 

That is, the motion of the nonholonomic 

system resulting from equation (2.8) is not 

a critical point of any functional in the 

sense of the Calculus of Variations Kozlov 

V.V.(1982a). 

In an attempt to circumvent this Arnold 

V.I. (1985), difficulty, Kozlov V.V.(1983) 

gives a variational formulation of 

constrained motion, calling the resulting 

equations of “variational axiomatic kind,” 

leading to the name “vakonomic”. 

 

Definition2: The vakonomic problem 

consists of extermizing the functional  

defined by equation (2.2) among the curves 

satisfying, Lewis et al (1995), the 

constraints. Hence a curve 

, , is a 

solution of the vakonomic problem if  is a 

critical point of  

We may use the Hamilton’s principle, 

where by the motions of the system are 

extremal of the variational problem of 

Lagrange. The equation of motion then can 

be obtained as the Euler-Lagrange 

equations for an extended singular 

Lagrangian:  

 

,   
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Equation (2.10) can equivalently, Lewis et al(1995),be expressed in the form: 

 

Where,  are the Lagrange multipliers. 

 

The Rolling Sphere. 

In this section an example showing that the 

vakonomic mechanics gives a different 

motion equation to that of nonholonomic 

mechanics and Chetaev method is given.  

Example1. 

Consider a homogeneous sphere rolling on 

a plane. Let the plane rotate with constant 

angular velocity  about the -axis and 

 be the 

angular velocity vector of the sphere 

measured with respect to the inertial frame. 

Let  be the mass of the sphere, 

 its inertia about any axis, and let 

 be its radius.The configuration space is 

 

denotes the position of the center of the 

sphere and  denote the 

Eulerian angles. 

The contact condition in terms of the 

coordinate   of the 

center of the sphere,the angular velocity 

 of the rotating table (pointing upward) 

and that of the ball  may be written as: 

 

 
and is equivalent to: 

 
Let us consider the dynamic equation of the system using the different mechanics. 

 

I. Nonholonomic mechanics equation of motion of the rolling Sphere  

The Lagrangian of the system is given by: 

 
Based on equation (2.7) we have: 
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We use quasi-velocities such that 

. 

Let us define momenta:   

                 

Then from (2.13) and (2.14) we obtain: 

, , , . 

Setting an initial condition of 

, we obtain: 

 
From (2.14) and (2.15) we obtain:                   

    

From equation (2.16), it follows that:  and  . 

Using these values of ,  , the constraint equation (2.12) and (2.16) we have the 

dynamic equation of the system given by: 
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where   

 

 

II. Vakonomic mechanics equation of motion of the rolling Sphere  

The extended Lagrangian is given by: 

 

 

 
Let us define momenta: 

 
 

From (2.10) and (2.18) we have: 

,     ,    ,      . 

Setting an initial condition of 

, we obtain:  

  .                                                                  (2.19) 

From equations (2.18) and (2.19) it follows that: 
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 .                                          (2.20) 

From (2.20) we obtain    and   . Using these values of 

 , , the values   ,  and the constraint equations (2.12), 

we have 

the 

dynami

c 

equatio

n given 

by: 

 

 

 

 

 

 

 

 

where   

One can observe that, motion equations 

(2.17) and (2.21) are in general not equal to 

each other. Moreover using Chetaev 

equation (2.9) one can easily show that, 

motion equation of the rolling sphere is 

identically equal to the motion equation 

given by (2.21) obtained from 

nonholonomic mechanics, equation (2.17). 

 

 

Vakonomic Mechanics in the Case of 

Holonomic Constraints 

In the vakonomic mechanics, Kozlov V.V. 

(1982a), Arnold V.I. et al (1988), the 

virtual displacement condition for a general 

nonholonomic constraint of the form 

 

is obtained by variation of the generalized 

coordinates and the generalized velocities 

and is given by: 

 
The trajectory equations are given by: 
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Where,  is non-conservative force and  is the constraint force. 

 

When         

)4.3(,0. 
A

A
qR   

 

 

then  will not appear in (3.2) and hence 

the equation becomes identical with that of 

vakonimic motion equation (2.11).But the  

 

work done by the constraint forces vanishes 

for ideal constraints where we have smooth 

surfaces.  

Let us investigate this as follows: 

When constraint equation  is integrable, then there exists a function 

 such that: 

 

The integration of  represents a surface   , 

where c is a constant.  

Now 

 

 
The variation of the constraints, equation (3.1), becomes: 

 

 

 
From the equality: 

 
integrating on equation on an interval [a, b] we obtain: 
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From (3.8) one can infer that, the virtual 

displacement of variation of the constraints 

is tangential to the surface 

 . This result is expected 

since for ideal constraints the surface is 

assumed to be perfectly smooth, the 

constraint forces are normal to the virtual 

displacements. Hence we can conclude that 

in case of ideal and integrable constraint, 

the virtual work done by the constraint 

force,  .That is 

vakonomic mechanics (3.2) based on (3.6) 

and (3.8), and with the choice of 

 have the form: 

 

 

 

 
 

We can conclude that, the vakonomic 

mechanics gives the same dynamic 

equation of motion as nonholonomic 

mechanics and Chetaevs method in the case 

of ideal constraints. In this case (3.2) 

reduces to equation (3.9).  

 

Vakonomic Mechanics in the Case of 

Nonholonomic Constraints 

We shall show a unified approach to 

nonhohlonomic systems and compare it 

with vakonomic mechanics. 

Let us start from variations of the 

constraint equation (3.1). Assuming the end 

point condition: 

 

 

and integrating equation (3.1) on  we obtain an integral constraint: 

 
Now given a functional 

, 

Subject to boundary conditions (4.1) and  first order nonlinear nonholonomic constraints 

of the form : 

 
construct the extended functional: 
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and extremizing over {  leads to: 

  

 

Where, 

 

On the other hand, multiplying (3.1) by the 

scalar function  and then 

integrating it on [a b] with respect to time, 

taking into account (4.1), we obtain: 

 

 
 

Substituting (4.5) in (4.4) leads to: 

 

Making a proper choice of  and substituting   , and including the constraint 

equations we have: 

 

 
 

Equation (4.7) gives a complete motion 

equation for systems constrained by first 

order nonlinear nonholonomic constraints 

of the form (4.2). 

Note that (4.7) is the same as equation (2.9) 

including the constraint equations, except 

that Chetaev condition 

 (i.e.  is nowhere used 

in the proof. Hence, expression (4.7) is a 

unified motion equation of nonholonomic 

system for nonholonomic constraints of the 

form 4.2). 

 

Remark: The Chetaev condition in the example of the rolling sphere is 

nonzero. . Indeed:  



Ethiop.  J.  Educ.  &  Sc.                                          Vol.  11  No  1,   September,  2015   34 
 

   . 

 

Let us compare vakonimic mechanics, 

equation (2.11), and our model (4.7). 

I. For these two to be equal, the term 

 in expression 

(2.11) has to vanish. We have already 

seen in equation (3.6) that 

, if the 

constraints are holonomic. That is 

(2.11) and (4.7) are equal provided that 

the constraints are holonomic. 

II. As it is mentioned in definition2, 

vakonomic method of motion is 

obtained through a purely variational 

principle by imposing the fulfilling of 

the constraints on the variations 

themselves, not on the infinitesimal 

variations as it is the case in 

nonholonomic mechanics. 

In this paper, it is shown that the variations 

of linear nonintegrable nonholonomic 

constraints are not consistent with the 

constraints. Let us investigate this problem 

using first order nonintegrable linear 

nonholonomic velocity constraints. In this 

case the constraints can be expressed in the 

form of expression (2.5). 

Suppose the variation of expression (2.5) 

satisfies the constraints. Then we have: 
 

 
Now with this immediate equation, 

imposing end point condition (4.1) and 

integrating over [a, b] for all we 

obtain: 

 

 
Moreover,  

   

Hence, 

0  

 
 

 

From this last equation, we see that for the 

variation of the constraints,  to 

satisfy the constraint equation, the 

constraint equation (2.5) must be an exact 

differential equation, i.e.
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holds true, if and only if (2.5) is exact. 

Provided that the linear constraints (2.5) 

satisfy condition  (i.e. it is an exact 

differential equation), an integrand function 

of the form  therefore exists but 

may be unknown. Such constraints are 

termed semi-holonomic, Goldstein H. 

(2001). Semi-holonomic constraints are 

holonomic constraints but their integrand 

may not be known. The existence of such a 

function,  granted by exactness 

condition (4.8), contradicts our assumption 

that the constraint is nonintegrable.   

 

We can now conclude that, the immediate 

above proof and the discussion there in, 

ascertains that, only the variation of 

integrable constraints (semi-holonomic and 

holonomic constraints) satisfy the 

constraint equations of a given system. In a 

nonholonomic system, only the original 

constraint satisfies the constraint equations 

and its variations are not consistent with 

the constraints. To strengthen this 

conclusion let us take up the following 

particular example. 

 

Example 2 

Consider a linear nonholonomic constraint 

below and suppose a particle is moving in 

the space, subject to the constraint:  

 
 

Where and  are functions of 

 of class  and the 

Pfaffian form  does not admit an 

integrating factor. That is  is not known. 

The original orbit surely satisfies constraint 

(4.9), and so by hypothesis do the velocity 

and variations from it satisfies (4.9). So we 

have: 

 

 

 
 

Suppose the variation satisfies the constraint condition. That is possible only if 

 
From (4.11) at each instant of time we have: 

 

Note that we use the commutation:  for a linear in velocity 

nonholonomic systems, Zhongheng G. et al (1989). Subtracting (4.12) from (4.13) we 

have: 
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Expanding equation  we obtain: 

                            
On the other hand, since the following proportion follows: 

 

  

 

From which equation becomes: 

 
 

 

This tells us that the constraint is exact and 

hence integrable. This is not true since the 

constraint is supposed to be nonintegrable. 

The assumption that the variation satisfies 

the constraints led to a contradiction.  
 

Hence, the variations from the original 

nonholonomic constraint do not conform to 

the equations of the constraint. In other 

words, there is no varied path   that 

satisfies the constraint condition in a linear 

nonholonomic system. It needs to be noted 

that the infinitesimal variations  and the 

actual curve  (Look fig.1) satisfies the 

constraint conditions. 
 

According to this paper, the main reason 

for vakonomic mechanics to give different 

motion equations to nonholonomic 

mechanics and our model equation (4.7) is 

that, in a purely variational approach to 

mechanical modeling, the variations from 

the original nonholonomic constraints don’t 

conform to the original constraint 

equations.  
 

As we have shown, for holonomic 

constraints all the motion equations 

obtained from Vakonomic nonholonomic 

mechanics and equation (4.7), Chetaev 

equation without Chetaev condition, are the 

same. 

 

 

 

CONCLUSION: 

In this article, different methods of 

modeling mechanical systems were 

investigated. The Vakonomic mechanics is 

compared against the nonholonomic 

mechanics and Chetaev method of 

constructing motion equations of 

constrained mechanical systems. It is 

ascertained that all of them gives the same 

motion equations for the case of holonomic 

constraints and the Vakonomic mechanics 

is different from the remaining ones for 

nonholonomic systems. The reason why 

Vakonomic mechanics is different in the 

case of nonholonomic constraints is 

detailed in the paper. Moreover, Chetaev 

equation is proved without using its 

conditions. It is verified using an example 

that there are cases when Chetaev condition 

is not valid. 
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