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Abstract:  

In this paper the dynamic equation of Duopoly production model in certain two firms is 

considered. The existence of best responses that can maximize profit, and stability 

conditions are analyzed when one of the players or both of them have delayed 

information and/or delayed actions. A system of nonlinear delayed differential equations 

and Lyapunov method of nonlinear stability analysis are employed. It is ascertained that, 

in the case of equal and fixed information delay in both the firms, the delay causes 

oscillatory process in the system and does not affect the qualitative behavior of the 

solution (no effect on the stability of the Nash equilibrium point), but only changes the 

transition process.  On the other hand, when one of the firms has implementation delay 

and the rival player makes decision without delay, it leads to instability of the dynamic 

system at least locally. The same result is obtained when one of the firms has 

implementation and the other information delay. Numerical simulation using 

MATLAB2012a is used to demonstrate the applicability and accuracy of the results. 
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INTRODUCTION 
The  study  of  dynamic  systems  in  the  

form  of  , ,x f x t  where x  and  f  

are vectors in ,  1,2,nR n  ,has  been 

subject  of  nonlinear dynamic research in 

Economics (Zhang,2005;Peters,1994) with  

the  goal  of getting better understanding of 

phenomena  such  as  economic growth, 

prediction and control their behavior. A 

wide range of applications of nonlinear 

models like Duopoly models have been 

devised and applied in Economics.  

Duopoly is a market model in which there 

are two (Bischi & Namzada,2000; 

Elsadany,2010) different rules–quantity-

setting rule which is referred to as the 

Cournot model after the economist 

Cournot, and the price-setting rule called 

the Bertrand model after the economist 

Bertrand. In this paper the mathematical 

model of quantity-setting rule or game 

(Cournot model) is considered and its 

stability relative its Nash equilibrium point 

is investigated. It is assumed that the firms 

are identical in their technology and in the 

goods they are producing. 

 Moreover, the assumption that the 

equilibrium of the two firms exist on the 

intersection of the two firms “reaction 

functions” is considered. Hence, the 

investigation starts from finding these two 

reaction functions. The impact of time 

delay on the stability of the equilibrium 

points of the competing firms, described by 

delay differential equation is investigated. 

Thus, the purpose of this paper is to 

analyze the stability (in the sense of 

Lyapunov) of Cournot model based on 

different delays such as information and 

action delays of the competitors.  

The Model and Statement of the 

Problem  

In Cournot model, each firm decides the 

amount of production, considering the 

amount by its competitors as a given 

constant. In this game, the two duopolies, 

simultaneously and independently, decide 

on the amount of production. 

Consequently, let firm 1 chooses 1x  and 

firm 2 chooses 2x  amount of production. 

Then the market decides the price of the 

product, p , through the aggregate demand 

(Kopel,1996) curve given 

by:  1 2 ,  p a b x x   where 

0, 0,a b  are parameters representing 

respectively, the maximum selling price 

and the opposite of the slope of the inverse 

demand function. It is assumed that  

1 2x x  is the total production and both 

firms have the same cost function given by 

    , 1,2i i iC x c x i  , where ix  is the 

quantity produced and ic is a constant 

marginal  cost. 

It is known that the profit of a firm is given 

by 

   1 2, : ,  1,2i i i i i ix x px c x p c x i      . 

That is 

   

   

2

1 1 2 1 1

2

2 2 1 2 2

                  1
  

                     1  

a c bx x bx a

a c bx x bx b





    


   
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Note that, eqs. (1a) and (1b) are functions 

of both 1x  and 2x . Equation(1a) is linear 

in 2x  and as 2x increases the profits of 

firm 1 decrease – since the coefficient on 

2x  is negative. It is second degree in 1x   

with a negative coefficient on 1x . So as 1x  

increases then first the profits of firm 1 

increases and then  decrease.The same 

condition applies to eq.(1b).   

The dynamics in which the firms adjust 

their level of production depends on the 

gradient of marginal profit and ( Agiza & 

Elsadany,2003;Bischi & Namzada,2000) is 

given by: 

       1    ,     1,2    ,                                  2i
i i i i

i

x t x t x i
x





   


 

where  i ix is a positive function which 

gives the extent of production variation of 

the 
th

i   firm following a given profit 

signal i  (adjustment function). In this 

paper for simplicity we assume  

 i i ix x   . 

Now using eqs. (1), (2), the assumptions 

and replacing      1x t x t x t    we 

have dynamic system of the form: 

       

       

1 1 1 1 2

2 2 2 1 2

, (
2  

3
2

)
x t bx t b x t x t

x t bx t b x t x t

    

    



  

where, .i
i

a c
b

b


  

Taking into account an information delay  

on the dynamics of the processes of 

interaction of competing firms, one 

possible way of describing eq.(3) is by 

delay differential equation system given as  

       

       

1 1 1 1 2

2 2 2 1 2

, (4
2

2  
)

x t bx t b x t x t

x t bx t b x t x t





     

     






 

where   is a positive number and is a 

delay parameter. 

Based on eq.(4)  the first part of this paper 

investigated the stability of its Nash 

equilibrium point. Moreover, other models 

obtained by modifying eq. (4) with 

different delay conditions are developed 

and their stability investigated at the Nash 

equilibrium point. 

Nash Equilibrium Point 

An equilibrium point or stationary point 

(Bischi & Namzada,2000; Smith, 2011) of 

the dynamic duopoly model is defined as a 

nonnegative fixed point of eq.(3). In eq. (3) 

assuming that each duopolies is trying to 

increase profit, we can have at most four
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 equilibrium points:   1
0 10,0 , ,0

2

b
E E

 
   

 
, 2

3 0,
2

b
E

 
  
 

 provided that 1a c ,  

2a c .These are  called boundary equilibria. Now let  1 1 1 1 22x b b x x    and 

 2 2 2 1 22x b b x x    .Then given some output 2x  for firm1 and 1x  for firm2, the 

best response that maximizes profit of firm 1 and firm 2 are respectively given as:   

1 2 1
1

1

0 ,  
2

x b
x

x

 
  


 and 2 1 2

2

2

0
2

x b
x

x

 
  


. 

It then follows that, the system of delay differential equations given by eq.(3 ) has a unique 

positive Nash equilibrium point  * * *

1  2 , x x x  given by: 

* *1 2 2 1
1  2 

2 2
0,   0,  (4 )

3 3

b b b b
x x a

 
     

under the conditions  1 2 2 12 , 2 .b b b b   

Stability Analysis 

Stability analysis is made for Nash 

equilibrium points and different delay 

parameters accompanied by Numerical 

simulations. 

Global Stability Analysis of Time Delay 

of one Firm over the other.  

The dynamics of the processes of 

interaction of competing firms for time 

delay of one firm over the other can be 

described by the system of delay 

differential equation in eq. (4). Assuming 
* *

1 1  2 2 1 2
, x x x xx x       in eq.(4) 

leads to: 

     

     

*

11 1 1 2

2 2 1 2

*

2

( ) ( )

( ) (
. (5)

)  

2

2

t b t t t

t b t t t

x x x x

x x x x

x

x





       


       

 

In order to prove the globally uniformly 

asymptotic stability of the equilibrium 

position  * * *

1  2 , x x x  for system of 

eq.(4) we prove the globally uniformly 

asymptotical  (Xiaoxin,  Liqiu, & Yu , 

2007) stability of  the equilibrium solution 

of system (5) in the 

region
* *

1 21  2 , { }x x x x    . For this 

purpose let us consider a Lyapunov 

function candidate given by 
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   
 

 
 

   

* *

1 1  2 2 * *

1 2 1 1  2 2 * *

1  2 

0 0

2 2

2 1

0 0
,  16 0 16 0

4 ,
 

 
   

     
 

    
          

   

 

x x
V x ln x ln

x x

d d

 

where 1 2,   are continuous functions in  ,0 .  

The derivative of the candidate function,V , in the direction of system of eq.(5) leads to  

   
 

 
 

 

 

         

         

* *

1 1  2 2 

1 2 1 2* *

1 1  2 2 

2 2 2 2

2 2 1 1

2 2

1 2 1 1

0 0
,  16 0 16 0

0 0

0 4 0 ,

2 0 4 2 0 .

 
   

 

     

     

 
  

            
 

    

        

x x
V

x x

 

Therefore, the solution         1 2, 0x t x t V x t   whenever 

        1 2 1 22 0,  2 0 .x t x t x t x t          

In order to prove the global stability, we 

need to show that system (5) contains only 

trivial solution (Liao, Wang & Yu, 2007) in 

the maximal invariant set M  of the subset 

of solution set. 

Assume that       1 2x ,t x t x t  is an 

arbitrary solution contained in the largest 

invariant set M . That is the solutions must 

satisfy  

   1 22 0x t x t     and    1 2 02 0, x t x t for all t t     .  

We want to show that    x 0,0t  . System of eqs. (3) , (5) leads to 

1 20, 0,x x  Indeed, if            

 
1

2

0
    

0

x t

x t

 




 ,then   

 
1 1

2 2

  ,
x t const k

x t const k

  


 

 and 

hence, 1 2

1 2

2 0
.

2 0

k k

k k

  

  

 

The linear system related to 1 2,k k  have only trivial solution since the determinate is non-

zero. Thus, the solution 
* 1 2 2 12 2

, 
3 3

b b b b
x

  
  
 

 is globally uniformly asymptotically 

stable for system of eq.(5). 
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Numerical Simulation I 

Numerical simulation based on different delay parameters is conducted using MATLAB. 

a). Let * 1 1
,

3 3
x

 
  
 

, 1b  , then eq.(5) becomes: 

       

       

1 1 1 2

2 2 1 2

1
2

3
.

1
2  

3

x t x t x t x t

x t x t x t x t






              


    

          

 

Simulation result of this system for 
* 1 1

,
3 3

x
 

  
 

,  and different  delay parameters 

 , ( 0.9, 9.9, 20 )      is shown below in fig1. 

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
 Fig. 1.Duopoly Game Graph for Different Values of Tau and Nash point=(1/3,1/3).

time t

y
(t

)

 

 

y1

x1

y2

x2

y3

x3

tau=9.9

tau=0.9
tau=20

 

b) .Let 
* 20 20

,
3 3

x
 

  
 

,  1b  , then the simulation result is shown in fig.2 below. 
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0
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1
 Fig.2. Duopoly Game Graph for Different Values of Tau and Nash point=(20/3,20/3)

time t

y
(t

)

 

 

y1

x1

y2

x2

y3

x3

tau=0.9 tau=9.9

tau=20

 

In conclusion, one can infer from the above 

figures (fig1and 2) that, the effect of the 

delay on the model causes oscillatory 

process in the system. The delay does not 

affect the qualitative behavior of the 

solutions, but only changes the transition 

time process. In other words it delays 

stability as the delay parameter,  , 

increases 

Stability Analysis of Own Time Delay of 

one of the Firms and no delay of the 

second Firm. 

In this section we examine local effect 

caused by own implementation delay of 

one of the firms and the other being with 

no delay, on the stability of the Nash 

equilibrium point. 

Equation (5) in general can be lineaarized 

and be written in the form: 

 ,X AX  

where 

2 1 2 1

1
1 2

1 2

1 2 1 2
2

4 11 2 4

3 3
,  ,  , .

2 4 4 11

3 3

b b b b

x a c a c
A b X b b

b b b b b b
x

  
         
     

   
 

 

The new linearized form of equation (3) is now given as: 

 
 

 
 

2 1 2 1

1 1

2 21 2 1 2

4 11 2 4

3 3
.

2 4 4 11

3 3

b b b b

x t x t
b

x t x tb b b b

  
    

     
     

 
 

 

A dynamic system, using the linearized form of eq.(3), representing own implementation 

delay of one of the firms and the other being with no delay can be described as   
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 

   

11

2

12

1 2 1

1 2

1 2 1 2

2

( ) ( )

(

4 11 2

)

4

3 3
. (7)

2 4 4 11

3 3

b b b b
b b t

b b b b
b

t t

tt t b

xx

xx

x

x


     

    
    


            





 

Substituting the exponential forms  1
tx t ue and  2

tx t ve into eq.(7) leads to 

 

 

 
11

1 2

3 4

2

0
   ,            8

0

x t ue

v

x t

  

  



 
       
       

      
 
 

 

 where, 
1 2 1 2 2 1 2 1

1 2 3 4

11 4 4 2 4 2 11 4
, , . ,

3 3 3 3

b b b b b b b b
   

   
    1 0   is 

implementation delay of firm 1. 

Non-trivial solution exists if and only if 

   12

4 1 4 3 2 0.                9e              

Before we are going to look for the roots, let us consider the case where  
1

0   in eq.(9). 

Now consider  

2

1 4 1 4 3 2( 0.  (9*)  )           

In eq. (9*) , 1 2
1 4

7( )
0

3

b b
 


    

for otherwise it contradicts the assumptions 

made in (4a). 

Moreover, 1 4 3 2 0    , since  

0,  1,2,3,4i i    and 

1 2 4 3,  .      As a result all the 

coefficients of    in eq.(9*) are positive 

and hence all the eigenvalues of eq.(8) have 

a negative real part. It can  then be 

concluded that, the nonlinear system 

represented by eq. (3) with no delay has a 

locally asymptotically stable equilibrium 

point.  

The next question is to look for a cutoff 

value (if any) of the delay for which this 

stability of the equilibrium point is lost. To 

examine whether such a treshhold value 

exists or not put ,   0i     in eq.(9)  

and obtain 

  2

4 1 4 1 1 3 2 0. (9 )i i cos isin a                   

Separating the real and imaginary part of eq. (9a) leads to   
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 

 

2

1 4 1 1 3 2

1 1 4 1 4

. (10)
cos sin

cos sin

         

        

   


  

 

Squaring each part in eq.(10) and adding we obtain: 

       
2 24 2 2 2

4 1 3 4 3 2 1 42 0.   11               

From eq.(11)  the root is obtained to be:  

       
2 2 22 2 2 2

4 1 3 4 4 1 3 4 3 2 1 4

0

2 2 4
: 0. (11 )

2
a

           


        
 

   

Note that,    
2 2

3 2 1 4 0    , 

and      
2 2 22 2

4 1 3 4 3 2 1 42 4 0,             
 

which implies that eq.(11) has 

only positive real roots. Hence, 0 is the only positive root of eq.   11 . Consequently, 

eq.(9) has only purely imaginary roots, 0.i    

To find 1  solve for 1cos   from eq.(10) and obtain: 

 
 1 2 3 4

1 2
0 01 0 4

1 2
,  0,1,2,     .             12n n

cos n
   


   


 
    
 
 

 

Since the real part of all the roots of the characteristic equation of eq.(9) are zero , we can 

say that: 

 
1 2 3 4

1 2
0 1 0 4

1
cos

  


   


 
 
 
 

, 

 is the smallest (among 1

n ) cutoff value at 

which stability of the equilibrium point  is 

lost. For all values 1 1

n   the Nash 

equilibrium point of delay differential 

equation in eq. (7 ) is unstable. A routine 

bifurcation analysis shows that the stability 

can’t be regained in later time t. The 

numerical simulation result in figures 3 and 

4 also shows that the stability can’t be 

regained. 

Numerical Simulation II 

a). Let 
* 1 1

,
3 3

x
 

  
 

, 1b  , 
* *1 2 2 1
1  2 

2 2
0,   0, 

3 3

b b b b
x x

 
     Then 

1 2 2b b   then eq.(7) becomes: 
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 

 

11 21

22 1

14 4
( ) ( )

3 3
.

4 14
( )

3 3

t t t

t t

x xx

xx x


 

  


   


 

  

The simulation result for this section is shown in fig.3 below for an equilibrium 

point
* 1 1

( , )
3 3

x   .   

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig.3 Duopoly game graph with delay of one of the firms with equilibrium point of (1/3,1/3)

time t

X
(t

)

 

 

x1

x2

 

It can be inferred from fig. 3 that the stability of the equilibrium is lost after some time 

from the start and increasing the simulation times howed, there is no chance of regaining 

the stability lost. 

b). Let
* 20 20

,
3 3

x
 

  
 

, 1b  ,
* *1 2 2 1
1  2 

2 2
0,   0, 

3 3

b b b b
x x

 
     Then 

1 2 2b b  0.Then eq.(7) reduces to: 

 

   

211

12 2

140

3

40 140

40
( ) ( )

3

3 3
( )

t

t

t t

tt

xx

xx

x

x






 


   






 

The simulation result for this section is shown in fig.4 below for an equilibrium point of 

* 20 20
( , ).

3 3
x   
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It can be inferred from the fig. 4 that, the 

stability of the equilibrium is lost after 

some time  from the early start. 

Demonstartion by increasing the simulation 

time shows that the stability can’t be 

regained in any future time. 

Stability Analysis of Own Delay of one 

the Firms and Information Delay of the 

second Firm 
A dynamic system based on eq.(3) 

representing own delay of one of the firm 

and information delay of the other can be 

described as: 

 

   

2

11

1 2 1

2 1

1 2 1 2

2 212

( ) ( )

( )

4 11 2 4

3 3
. (13)

2 4 4 11

3 3

b b b b
b b

b b b b
b t b

t t t

t t

xxx

xx x





     
    

    


            






 

In the same way we did in section 4.2, substituting the exponential forms 

 1
tx t ue and  2

tx t ve into the linearized equation (13) we obtain: 

1

2

2

1 1 2

3 4

0
       ,                        (14)

0

x ue

vex





  

  





       
               

 

 where 

1 2 1 2 2 1 2 1
1 2 3 4

11 4 4 2 4 2 11 4
, , . ,

3 3 3 3

b b b b b b b b
   

   
    1 2  , 0   and  

are information and implementation delays  of firm 1 and firm 2 respectively .Non-trivial 

solution in eq.(14)  exists if and only if 

 2 2 12

4 1 1 4 3 2 0.e e e                

Putting 1 2   ,for simplicity, we obtain: 

 2

4 1 1 4 3 2( 0. 1 )) ( 5e              
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Based on the discussion made in section 4.2, we have the linearized dynamic system 

represented by eq.(14) stable when there is no delay 
1 2

( 0, 0)   . Now assuming 

 i  with 0    to be the solution of eq.(15) we have: 

 2

4 1 1 4 3 2( ,) 0ii e               

that leads to 

   

 
4 1 1 4 3 2

2

1 4 3 2

(
. (16)

(

)

s)co

sin       

     

   


 

 

Squaring and adding we obtain: 

 
24 2 2

4 1 1 4 2 3( 0,)          

from which it is obtained that: 

     
2 4 2

4 1 4 1 1 4 3 22
4

0,
2

o

       


    
   

and 

     
2 4 2

4 1 4 1 1 4 3 24
.

2
o

       


   
  

To find   solve for tan( )  from eq.(16) and obtain: 

 1 411
,  0,1,2,

n

o o o

n
tan n

  

  

 

    
 

 

Since the real part of all the roots of the characteristic equation eq.(15) are zero, we can say 

that 
 1 1 411

o o

tan
 

 


  
   

  

 is the smallest (among 
n

 ) cutoff value at which 

stability of the equilibrium point  is lost and can never be  regained in the fiture time .t  The 

numerical experiments shown in fig.5 below is in agreement with the result of this section. 

Numerical Simulation III 

a). Let 
* 1 1

,
3 3

x
 

  
 

, 1b  , 
* *1 2 2 1
1  2 

2 2
0,   0, 

3 3

b b b b
x x

 
     Then 

1 2 2.b b   The simulation result for the case where one the firms is with information 

delay and the second with own (e.g. production) delay is shown in fig.5 below for the same 

delay constants
1 2

( 0.5).    
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b). Simulation result for the case where one the firms is with information delay and the 

second with own (e.g. production) delay is shown in fig.6 below for different delay 

constants
1 2

( 5, 10).    
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Fig.6 Duopoly game graph with information delay one of the firms and own delay on the second
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X
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)

 

 

x1

x2

 

In  both figures 5 and 6,it is clear  that the system loses its stability with in few second 

from the start.  

 

CONCLUSION 

In this article, the stability of the Nash 

equilibrium point of nonlinear Economic 

model called Duopoly model is analysed. 

The nonlinear dynamics is described by 

delay differential equations. The result 

shows that, global stability of the 

equilibrium points can be secured in the 

presence of delay, like it is the case when 

both the competing firms have information 
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delays. It is also shown that, there are cases 

when stability is lost  after some cutoff 

point. The results of this article can be used 

to justify strategies to enhance the 

competitiveness of production in different 

enterprises, design best strategies of 

obtaining optimal profit, keeping the 

production enterprises from instability, 

justify problems in the real market and 

design solution related to production. 

Future  research can be  conducted by 

considering cases such as when one of the 

competitors has both information and 

production time delay or one of them has 

production (own delay) and the other has 

information delay. 
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