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ABSTRACT 

The von-Neumann entropy (VNE), usually expressed in terms of the density operator, is 
the mathematical tool to measure the degree of entanglement of a bi-partite system. 
Applying the solutions of the quantum Langevin equations, the anti-normally ordered 
characteristic function of the intra-cavity photons produced by a non-degenerate 
parametric oscillator could be calculated. With the help of the resulting characteristic 
function, the Q- function which is then used to calculate the entanglement of the intra-
cavity photons using VNE is determined. Moreover, the photon number distribution, the 
mean photon number, the normalized second order correlation function, the intensity 
difference, and quadrature variance for the intra-cavity photons produced by a non-
degenerate parametric oscillator coupled to a two-mode squeezed vacuum reservoir is 
determined. It was found that when the squeeze parameter increases the entanglement also 
increases. These show that the entropy entanglement has a direct relation with squeezing. 

Keywords: Entanglement, Mean photon number, Parametric down conversion, Q-function
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INTRODUCTION 

The quantum properties of a system 
coupled to a squeezed vacuum reservoir 
could be analyzed by employing a function 
such as the Q function or the positive P 
function or the Wigner (W). Generally 
such a distribution function is obtained by 
using Fokker-Planck equation, which is 
determined from the equation of the time 
evolution for the reduced density operator. 
However, undertaking the master equation 

(Louisell, 1973; Scully and Zubairy, 1997) 
and resolving the associated Fokker-
Planck equation (Anwar and Zubairy, 
1992) involves a great deal of 
mathematical operations. On the other 
hand, the derivation of the quantum 
Langevin equations (Meystre and Sargent,
1991) helps to minimize the mathematical 
task. 

Optical parametric oscillators (OPO) and 
amplifiers (OPA) (Yariv, 1989) are 
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nonlinear optical devices that produces 
twin photons by spontaneous down 
conversion of a pump photon interacting 
with nonlinear crystal in and out of an 
optical cavity, respectively. It has been 
studied nearly for a half century due to its
twin photons produced by these nonlinear 
optical devices (Einstein et al., 1935) and  
used in testing the basic quantum 
mechanics and in technological 
applications in areas such as frequency 
con-version, low noise optical 
measurement, squeezed light sources,  
quantum information, teleportation, and 
cryptography. The type-II OPO (NDPO) 
used to experimentally demonstrate the 
implementation of the Einstein-Podolsky-
Rosen (EPR) paradox (Ou, et al., 1992). 
This has made NDPO increasingly 
important as entangled continuous 
variables have been proposed and used to 
implement quantum information protocols 
such as quantum teleportation (Furusawa et 
al., 1998). 

In this study, with the aid of solutions of 
quantum Langevin equations, we obtain the 
anti-normally ordered characteristic 
function produced by non-degenerate 
parametric oscillator (NDPO). With the 
help of this characteristic function, the Q-
function is determined which in turn is 

used to calculate the entanglement of the 
intra-cavity photons in a sub-threshold 
NDPO  coupled with a two-mode squeezed 
vacuum by calculating the Von-Neumann 
Entropy (VNE). In addition, the photon 
number distribution with the help of the Q-
function is calculated. Furthermore, with
the aid of solutions of quantum Langevin 
equations,  we also  determine, at steady-
state, the mean photon number of the two 
mode cavity light, the quadrature 
squeezing, and the photon number 
difference (Intensity difference) of the two-
mode intra cavity light. 

MATERIAL AND METHODS 

Here we consider NDPO coupled with a 
two-mode squeezed vacuum reservoir, the 
model described by Fesseha (1998). 
Applying the two-mode quantum Langevin 
equations, first we obtain the noise force 
correlations. Moreover, with the help of 
these results, we determine the Q-function 
of the two-mode cavity light. These method 
help us to calculate the  entropy 
Entanglement and  we also  determine, at 
steady-state, the mean photon number of 
the two mode cavity light, the quadrature 
squeezing, the intensity difference of the 
two-mode intra cavity light. 
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Figure 1: Schematic representation of the model.

The Quantum Langevin equations 

In this section, we tried to obtain the quantum Langevin equations for the two- modes. 
With the pump mode treated classically, this system can be described by the interaction 
Hamiltonian 

† † † † † †
1 2 1 2 1 1 1 1 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )H i a a a a a a a a                                               (1) 

Where ɛ is a constant proportional to the amplitude of the pump mode, 1â and 2â are the 

annihilation operator for the signal and idler modes, and 1̂ and 2̂ are reservoir operators. 
Following the procedure described by Fesseha (1998) and with the aid of the interaction 
picture the Langevin equations are found to be: 

†1
1 2 1

ˆ ˆˆ ˆ
2

da a a F
dt

     (2) 

2
2 2

ˆ ˆˆ ˆ
2

da a a F
dt

     (3) 

Where  is the cavity damping rate for the signal as well as the idler mode, 1̂F  and 2̂F are 
noise operators with zero mean and satisfying the correlation functions (Fesseha, 1998). 

† ' † ' '
1 1 2 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( 1) ( )F t F t F t F t N t t     , (4) 

† ' † ' '
1 1 2 2
ˆ ˆ ˆ ˆ  ( ) ( ) ( ) ( ) ( )F t F t F t F t N t t    ,        (5)
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' † † ' '
1 2 1 2
ˆ ˆ ˆ ˆ  ( ) ( ) ( ) ( ) ( )F t F t F t F t M t t    ,       (6)

' † † '
1 1 1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0F t F t F t F t  ,           (7)

' † † '
2 2 2 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0F t F t F t F t  ,          (8)

† ' † '
1 2 1 2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0F t F t F t F t  ,           (9)

Where for a given reservoir, 2sinhN r , cosh sinhM r r , and r is the squeeze 
parameter. In order to decouple the differential equations (2) and (3), it is necessary to 
introduce new operators defined earlier by Fesseha (1998)

†
1 1 2

ˆ ˆ ˆA a a     (10) 
and

†
2 1 2

ˆ ˆ ˆA a a      (11) 
so that combination of Eqs. (2), (3), (10) and (11), it yields:

†1
1 1 2

ˆ 1 ˆ ˆ ˆ
2

dA A F F
dt

     (12) 

and

†2
2 1 2

ˆ 1 ˆ ˆ ˆ
2

dA A F F
dt

    ,    (13)

where 
2     .                         (14) 

The solutions of equations (12) and (13) turn out to be: 
'/2 ( )/2 ' † ' '

1 1 1 2
0

ˆ ˆ ˆ ˆ( ) (0) ( ( ) ( ))
t

t t tA t A e e F t F t dt        (15) 

and 
'/2 ( )/2 ' † ' '

2 2 1 2
0

ˆ ˆ ˆ ˆ( ) (0) ( ( ) ( ))
t

t t tA t A e e F t F t dt       . (16) 

The Q function 
  

The time dependent Q-function describing the intra-cavity idler (α1) and signal (α2) modes 
given by 

1 2 1 2 2 1ˆ( , , ) ( , , )Q t Tr                  (17) 

Or the Q-function is expressible in terms of the anti-normally ordered characteristic 
function defined by 

22 * * * *
1 2 1 1 2 24

1( , , ) ( , , )exp( )Q t d zd z t z z        


    , (18) 
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Where the anti-normally ordered characteristic function ( , , )z t   defined by 
† †* *

1 2 1 2ˆ ˆˆ( ) ( )ˆ( , , ) ( e )za az a t a tz t Tr e e e               (19) 
On account of equations (10) and (11) along with (15) and (16), one gets 

†
1 1 1 2 2

ˆ ˆ ˆˆˆ ˆ ˆ( ) ( ) (0) ( ) (0) ( ) ( )a t A t a A t a F t G t    ,           (20) 
† † †

2 1 2 2 1
ˆ ˆ ˆˆˆ ˆ ˆ( ) ( ) (0) ( ) (0) ( ) ( )a t A t a A t a F t G t    ,                   (21) 

in which 
/2 /2

1
1ˆ ( ) [ ]
2

t tA t e e     ,                                                         (22) 

/2 /2
2

1ˆ ( ) [ ]
2

t tA t e e     ,                                                         (23) 

'( )/2 ' † ' '
1 2

0

1ˆ ˆ ˆ( ) [ ( ) ( )]
2

t
t tF t e F t F t dt   ,                                       (24) 

'( )/2 ' † ' '
1 2

0

1ˆ ˆ ˆ( ) [ ( ) ( )]
2

t
t tG t e F t F t dt   .                                        (25) 

Taking into account equations (20) and (21) and noting that the boson operators 1̂(0)a  and 
†
1̂ (0)a  commute with the noise operators 1̂F and †

1̂F , 2ˆ (0)a and †
2ˆ (0)a commute with the 

noise operators 2̂F and †
2̂F , the characteristic function can be put in the form 

* † * †*
2 1 21 1 2 1

† *
1 2 2 1 1 2 1

* * † †

ˆ ˆ ˆˆ ˆ ˆˆ ( ) (0) ([ ( ) ( )] (0))( ) (0)

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) (0) ([ ( ) ( )] (0)) ( ) (0)

ˆ ˆ ˆˆ ˆ ˆ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

ˆ( , , ) { (0)

}

ˆ{ (0)

z A t a zA t A t az A t a
S S

A t a zA t A t a A t a

z F t G t F t G t F t G t
R R

z t Tr e e e

e e e

Tr e e e



  

 

  



 



    






† †ˆˆ( ( ) ( ))}.z F t G te 

(26) 

Denoting the trace involving the system density operator by U and using the identity 
ˆ ˆ ˆˆ ˆ ˆ[ , ]A B B A A Be e e e e ,                                               (27) 

one easily finds 
* †

1 2 2

* † *
1 2 1 2 1 2

* 2 2 *
2 1 1 2 1

ˆ ˆ ˆ[ ( ) ( )] (0)

ˆ ˆ ˆ ˆˆ ˆ[ ( ) ( )] (0) [ ( ) ( )] (0)

ˆ ˆ ˆ ˆˆ[ ( ) ( )] (0) [ ( ) ( )]

ˆ{ (0)

}

A t z A t a
S S

zA t A t a zA t A t a

A t z A t a A t A t z z

U Tr e

e e

e e



 





 

 






  (28) 

So, that brings together the completeness relation: 
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2 2
1 2

1 2 2 1, ,d dI      
 

  ,                                          (29) 

and assuming the signal-idler modes and the squeezed vacuum reservoir are not correlated 
at the initial time or initially in the vacuum state (Gardiner, 1991), one finds 

2 2 *
2 1

2 2
ˆ ˆ[ ( ) ( )] * * *1 2

1 2 2 2 1 2

2 2*
2 1 1 1 2

ˆ ˆ ˆ ˆexp[( ( ) ( )) ( ( ) ( ))

ˆ ˆ( ( ) ( )) ].

A t A t z z d dU e zA t A t zA t A t

A t z A t

     
 

   

   

   

                  (30) 

Hence on performing the integration over 1 and 2 , there follows  
2 * * * *
2 1 2

ˆ ˆ ˆexp[ ( )( ) ( ) ( )( )].U A t z z A t A t z z                           (31) 
Furthermore, on account of Eq. (24), one can readily verify that 

† ' '' ' † '' ' † ''
1 1 1 2

0

† ' † '' † ' '' ' ''
2 1 2 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ[ ( ), ( )] exp( [2 ])([ ( ), ( )] [ ( ), ( )]
4 2

ˆ ˆ ˆ ˆ[ ( ), ( )] [ ( ), ( )])

t

F t F t t t t F t F t F t F t

F t F t F t F t dt dt

    

 



  

(32) 

and on with the aid of the commutation relations 
' † '' ' ''

1 1
ˆ ˆ[ ( ), ( )] ( )F t F t t t  ,     (33) 
† ' '' ' ''

2 2
ˆ ˆ[ ( ), ( )] ( )F t F t t t   ,     (34) 

' † '' † ' † ''
1 2 2 1
ˆ ˆ ˆ ˆ[ ( ), ( )] [ ( ), ( )] 0F t F t F t F t  ,              (35) 

one gets the result 
†ˆ ˆ[ ( ), ( )] 0F t F t  .                     (36) 

Following a similar procedure, one can also establish that  
†ˆ ˆ[ ( ), ( )] 0G t G t  ,                    (37) 

† 1ˆ ˆ[ ( ), ( )] (1 )
2

tG t F t e    ,     (38) 

† 1ˆ ˆ[ ( ), ( )] (1 )
2

tG t F t e   .       (39) 

With the help of the commutation relations described by equations (36)-(39), one can 
readily verify that 

† † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )] 0F t G t F t G t F t G t F t G t      . (40) 
Thus denoting the trace involving the reservoir density operator that appears in equation 
(26) by V and applying the Backer-Hausdorff relation together with (40), one can easily 
see that 

* * † † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆexp[ ( ( ) ( )) ( ( ) ( ))]exp[ ( ( ) ( )) ( ( ) ( ))]
R

V z F t G t F t G t z F t G t F t G t         ,

(41) 
so that applying again the Baker-Hausdorff relation, we see that 
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* * † † † †

* * † † † †

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆexp[ ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))]
1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆexp( [ ( ( ) ( )) ( ( ) ( )), ( ( ) ( )) ( ( ) ( ))])
2 R

z F t G t F t G t z F t G t F t G t
V

z F t G t F t G t z F t G t F t G t

 

 

       


       
.       (42) 

Now using equations (36)-(39) along with the fact that 
† †ˆ ˆˆ ˆ[ ( ), ( )] [ ( ), ( )] 0F t G t F t G t  ,                                                (43) 

one can easily obtain 
* * † † † †

* *

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆexp([ ( ( ) ( )) ( ( ) ( )), ( ( ) ( )) ( ( ) ( ))])
exp[( )(1 )]t

z F t G t F t G t z F t G t F t G t
z z e

 

 

      

  
              (44) 

In view of this result, expression (42) reduces to 
* * † †

* *

† †

ˆ ˆˆ ˆexp[ ( ( ) ( )) ( ( ) ( ))1exp[ ( )(1 )]
ˆ ˆˆ ˆ2 ( ( ) ( )) ( ( ) ( ))]

t

R

z F t G t F t G t
V z z e

z F t G t F t G t
 

 


   
   

   
 .   (45) 

Since the operators F̂ and Ĝ represent random Gaussian processes, one can express 
equation (45) in the form (Chow et al., 1994) 

* *1 1 ˆexp[ ( )(1 )]exp[ ]
2 2

t

R
V z z e H     ,                          (46) 

in which 
* * † † † † 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))]H z F t G t F t G t z F t G t F t G t          (47) 

It is then easy to check that   
* † † † † † † † † 2 2 2

*2 †2 †2 † † † † * † † † † † † † †

*2 †2 †2 † † † † 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ]
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ]
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] [

H z z FF F F GG G G FG G F GF F G z F G FG GF

z F G F G G F FF F F GG G G FG G F GF F G

F G F G G F F G

 

 

            

           

      * * † † † †

† † † † † † † † † † † †

* 2 2 * †2 †2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ] [
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ] [ ]

ˆ ˆˆ ˆ2 [ ] 2 [ ].

FG GF z FF F F GG G G

FG G F GF F G z FF F F GG G G FG G F GF F G

z F G z F G





 

     

           

   

(48) 

Employing equations (24) and (25) along with the correlation functions in (4)-(9), it can be 
readily established that 

† †ˆ ˆ ˆ ˆ (2 2 1)(1 )
4

t

R R
FF F F N M e 






     ,                                  (49) 

† †ˆ ˆ ˆ ˆ (2 2 1)(1 )
4

t

R R
GG G G N M e 






     ,                                   (50) 

† † † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0
R R R R

FG GF F G G F    ,                                             (51) 
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† † † † 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ (1 )
4

t

R R R R
FG GF G F F G e        ,                    (52) 

2 2 †2 †2ˆ ˆˆ ˆ 0
R RR R

F G F G    .                                                       (53) 

Hence taking into account equations (46), (48)-(53), one gets 

* *

* *

1exp( ( )[1 (2 2 1)(1 ) (2 2 1)(1 )]
2 4 4

1 ( )[1 (2 2 1)(1 ) (2 2 1)(1 )]).
2 4 4

t tt

t tt

V z z e N M e N M e

z z e N M e N M e

 

 

 
 

 
 

 
 

 

 

 

 

 

 

           

          
 (54) 

Now in view of equations (31) and (54) together with (26), the characteristic function turns 
out to be 

* * * *( , , ) exp[ ( ) ( )]z t b z z b z z           ,               (55) 
Where in view of Eqs. (10) and (11), we have: 

2 2[cosh( ) sinh( ) / 2 ] [cosh( ) sinh( ) / 2 ]t tr rb e t e t e t e t         
          .  (56) 

Finally, on introducing equation (55) into (18) and carrying out the integration over z  and 
  the Q-function is found to be of the form 

* * * *
1 1 2 2 1 2 1 2

1 2 2 2 2 2 2

( ) ( )4( , , ) exp[ ]
( ) ( )

b bQ t
b b b b

        


 

   

   


 
.          (57) 

This is the Q-function for the signal and idler modes for the given specified system. 

RESULT AND DISCUSSION 

Next we proceed to obtain the 
entanglement, quadrature variance, mean 
photon number, the second order 
correlation function, and intensity of 
photon number difference for the signal-
idler modes produced by a non-degenerate 
parametric oscillator coupled to a two-
mode squeezed vacuum. 

The Entanglement 
The entanglement (E) of the signal and 
idler photons is analyzed using the VNE 
(Vedral et al., 1997),  

2
ˆ ˆ[ log ]E Tr    ,          (58) 

where ( )
ˆ ˆ( )s i siTr  is the density 

operator for signal (s) or idler (i) photons 
obtained from the joint density operator 
ˆsi  by tracing over the states of the other. 

For maximal entanglement  and for 
minimal entanglement , we have 
derived a relation for E in terms of the 
none-diagonal Q function 

*
1 1

ˆ( , , )Q t     ,                (59) 
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This is a semi-classical representation of the density operator in terms of the coherent state 
for normal ordering, for the signal or idler photons given by:

2 2
1

1 1
1 ˆ ˆln

ln 2
d dE        
 

   .                                        (60) 

By applying the completeness relation for a coherent state, one can readily established that 
2 2

1
1 12

, 0

1( 1) ˆ ˆ
1 ln 2

n
n

k n

k d dE
nk

       






 
     
                       (61) 

and a series expansion for 1
ˆln    about 0

ˆ ˆ1 1    followed by a binomial 

expansion. Suppose ̂  is obtained by tracing over the idler mode, the diagonal Q-function 
for the signal mode can be determined using 

* 2 * *
1 1 1 1 2 1 1 2 2

ˆ( , , ) ( , , , , )Q t d Q t            .                           (62) 

With the aid of equation (57), one can see that 
* *
1 1 1 1

1 1( , , ) exp[ ]Q t
b b

   
  

  .                                                            (63) 

This result is used to determine the non-diagonal Q-function of 
* *
1 1

1 1( , , ) exp[ ]Q t
b b

  
  

  .                                             (64) 

Applying this none-diagonal form of the Q-function, after a rigorous mathematical 
derivation that is based on multiple use of the completeness relation for a coherent state, 
we found for the VNE that measures the entanglement of the intra-cavity signal and idler 
photons 

2 2
1 1[ (1 ) log (1 ) log ]E b b
b b 
 

     ,                (65) 

where b  is a time dependent variable that depends on the parameters r,  , and  . 

We have analyzed the entanglement, E, of 
the intra-cavity signal and idler photons for 
a steady-state and the results are shown in 
Figure 2. It displays the entropy as function 
of the parameter  which is less than 
one for sub threshold NDPO for different 
squeeze parameter, r. In Figure 2, we note 
that for values of the squeeze parameter, r,
increases, the entanglement, E, increases. 
This indicates that the semi-classical 
approaches for calculating quantum 
entropy are valid only when the NDPO is 
operating far below threshold. For far 

below threshold range the results display 
that the entropy becomes one and therefore 
shows maximal entanglement. This 
property becomes stronger as r increases up 
to a certain limit and when r exceeds this 
limit, E becomes greater than one and again 
the semi-classical approach breaks down. 
The reason for the maximal entanglement 
in far below threshold range could be the 
weak coupling constant or/and pumping 
field amplitude contributing in low   or 
high cavity damping rate   at the port 
mirror since for sub threshold 1   .
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This potentially make the NDPO to behave 
like Type-II spontaneous parametric 
conversion due to insignificant down 
conversion because of small   or high 

cavity escape rate of the down converted 
photons,  . Moreover, from Figure 2, in 
the absence of squeezed light, , the

Figure 2: The steady-state quantum entropy of the intra-cavity signal and idler 
modes; r = 1  (dotted), r = 0.5 (dashed), and r = 0 (solid).

entropy entanglement is about 71%. But as 
the squeeze parameter, r increases the 
entanglement increases. For example, as 
shown on the plots from Figure 2, we 
observe that when ,

and when . These show 
that the entropy entanglement has a direct 
relation with squeezing. 

Photon number distribution 
The mutual probability to find n signal photons and m idler photons can be written in terms 
of the Q function as: 

* *
1 1 2 2

2 2 2
* *

1 2 1 1 2 2* * 0
1 1 2 2

( , , ) [ ( , , )exp( )]
! !

n m

n n m mP n m t Q t
n m    

      
       

 
 

   
,  (66) 
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so that on account of Eq. (57), we have 

* *
1 1 2 2

2 2

2 2 * *
1 1 2 2

* * * *
1 1 2 2 1 2 1 2 0

1( , , )
! !( )

[exp( ( ) ( ))]

n m

n n m mP n m t
n m b b

u v
   

   

       
 

   

 


    

   
,                    (67) 

in which 

2 21 bu
b b



 

 


,                                                                                        (68) 

2 2

bv
b b



 




.                                                                                              (69) 

Now, on expanding the exponential terms in power series, Eq.  (67) takes the form: 

* *
1 1 2 2

2 2

2 2 * *
1 1 2 2

* *
1 1 2 2 0

1( , , )
! !( ) ! ! ! !

[( ) ( ) ]
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ijkl
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n m b b i j k l
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   

   

 

 

   
   

 


    

 


, (70) 

so that carrying out the differentiation and upon setting * *
1 1 2 2 0       , one can 

get 

2 2

, , , ,

1 ( )! ( )! ( )! ( )!( , , )
! !( ) ! ! ! ! ( )! ( )! ( )! ( )!

.

i j k l

ijkl
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u v i k i l j k j lP n m t
n m b b i j k l i k n i l n j k m j l m

   

 

 

   

   


        




          (71) 

One can  easily note that 
k l n i m j     .                                                                                 (72) 
Moreover, for m n the photon number distribution turns out to be 

2 2 2( )

2 2 2 2
0

1 [ !]( , , )
( ) [ !] [( )!]

i n in

i

n u vP n n t
b b i n i



 


  .                                                  (73) 

With the aid of Eqs. (14), (56), (68), and (69), one finds for 0   and at steady state: 
2 2 2coshb b r   ,                                                                                  (74) 

0u  ,                                                                                                          (75) 
tanhv r .                                                                                                    (76) 

In view of these results, the photon number distribution, Eq. (73), goes over into (Caves et 
al., 1991) 

2

2

tanh( , )
cosh

n rP n n
r

 .                                                                                                     (77) 

This shows that the photon number distribution for a two-mode squeezed vacuum reservoir 
produced by the system under consideration. 

(70)
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Quadrature Variance 
In this section, the squeezing properties of the two-mode cavity radiation and mean 
number of photon pairs of the two-photon phase-sensitive three-level laser coupled to a 
two-mode squeezed vacuum reservoir are investigated. In general, the squeezing properties 
of a two-mode cavity radiation can be described by the quadrature operators, 

                                                                                                           (78) 
and 

                                                                                                               (79) 

in which 
                                                                                                             (80) 

On account of Eqs.(10) and (11) together with (15) and (16), these operators take the form  

                (81) 

                (82)
Next employing Eqs. (81) and (82)along with the correlation functions (4)-(9), the 
variances of the quadrature operators can be shown that  

                                     (83) 

                                  (84) 

It then follows that 
                                                           (85) 

                                                        (86) 

As clearly indicated in Figure 3, the degree
of two-mode squeezing decreases with the 
cavity damping constant for smaller values 
of squeeze parameter, r, but it increases for 
larger values. It is not difficult to note that 
a maximum obtainable squeezing is 
witnessed slightly above the threshold 
value and it is independent of the squeeze 
parameter, r. It is found that a maximum 
two-mode squeezing of about 87.8% occurs 
at various values of . Most 

recently, the same result has been reported 
following a different approach and using 
different parameters (Tesfa, 2008). 
Moreover, the value of  for which a 
maximum squeezing occurs increases with 
the squeeze parameter, r.  Therefore, 
interaction of atom with squeeze vacuum 
reservoir enhances squeezing. 
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Figure 3: The steady-state quadrature variance of the intra-cavity signal and idler modes 
versus  for  and for different values of r. 

Mean photon number
The mean number of photon pairs describing the two-mode cavity radiation can be defined 
as

                 (87) 
In view of Eq. (80), one can readily obtain 

(88) 
With the aid of (15) and (16) together with (10) and (11), the mean photon number takes 
the form 

(89) 

At steady-state, it turns out to be 
(90) 

               (88)

           (89)

                                     (89)
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Figure 4: The steady-state mean photon number of the intra-cavity signal and idler  
modes  versus  for different values of r. 

In Figure 4, we plot the mean photon number of the two-mode light versus g in the absence 
and presence of the squeezed vacuum reservoir. It can be seen from this figure that the 
squeezed vacuum increases the mean photon number in region where there is strong 
squeezing and entanglement. Hence this system generates a bright and highly squeezed as 
well as entangled light. 

Intensity difference 
The intensity difference can be defined as  

 (91) 
Employing equations (10), (11), (15), and (16), the mean of the intensity difference at 
steady state turns out to be 

                       (92) 

In Figure 5, we plot the steady state variance of the normalized photon number difference 
for the intra-cavity signal and idler modes coupled to squeezed vacuum reservoir. The red 
dotted curve, representing the steady state normalized photon number difference in the
absence of squeeze parameter, i.e., for vacuum reservoir only, shows that the intensity 
difference has greater value when . But initially in the absence of parametric 

                           (91)
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amplifier ( , the normalized intensity difference is 0.75 which is a maximum value. 

On the other hand, for 0< , as the squeeze parameter, r, increases the intensity 

difference increases. Furthermore, for , as r increases normalized photon number 
difference decreases.  

Figure 5: The steady-state photon number difference of the intra-cavity signal 
and idler modes versus   for different values of r. 

Normalized second-order correlation functions 
In this section, we analyze the second-order correlation function for the separate mode as 
well as for the superposition of the two modes. Moreover, we calculate the linear 
correlation coefficient between the cavity modes. The normalized second-order correlation 
function for the two-mode light can be expressed as 

      (93)

Since and  are Gaussian variables with vanishing mean, Eq. (93) takes the form 
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                                                 (94) 

With the aid of Eqs. (10), (11), (15) and (16), the steady-state second-order correlation 
function takes the form: 

                              (95) 

Figure 6: The steady-state photon number correlation of the intra-cavity signal 
and idler modes versus   for different values of r. 

We plot, in Figure 6, the second-order 
correlation function for the two-mode light 
coupled with squeeze vacuum reservoir.
We easily see from this figure that 

increases with   in both cases. 
We also see from the same figure that the 
effect of squeeze parameter, r, is to 
decrease the second-order correlation 
function. As this function deals with the 
correlation between the photon numbers, as 
already seen in the plots, it would not be a 
direct measure of the squeezing as well as 

entanglement in this system. However, it
could be an indirect inference for the 
existence of squeezing and entanglement as 
it exhibits quantum correlation that violates 
certain classical inequalities like Hillery-
Zubairy and Cauchy-Schwarz inequalities. 

CONCLUSION 
In this work, we have seen the simplicity 
with which the entanglement of the von-
Neumann entropy generated by coherently 
driven non-degenerate three level laser 
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whose cavity contains a non-degenerate 
parametric oscillator (NDPO) could be 
analyzed with the aid of the quantum 
Langevin equations. Applying the solutions 
of these equations, we obtained the anti-
normally ordered characteristic function. 
With the aid of the resulting characteristic 
function, the Q-function is determined 
which in turn used to calculate the 
entanglement of the twin intra-cavity 
photons in a sub-threshold NDPO coupled 
with a two-mode squeezed vacuum by 
calculating the Von-Neumann Entropy 
(VNE). We found that the maximum 
entanglement is  for maximum 
squeeze parameter . Here we observe 
that the entropy entanglement increases 
with squeeze parameter

Furthermore, applying the Q function, the 
photon number distribution for the signal 
and idler modes are obtained. We have 
seen that at steady state and in the absence 
of parametric oscillation, the two-mode 
photon distribution shrinks to the photon 
number distribution of the single-mode 
squeezed vacuum. Moreover, employing 
the solutions of the quantum Langevin 
equations, we determined the mean photon 
number, the quadrature variance, the 
intensity of the photon number difference, 
and the normalized second-ordered 
correlation functions for the signal-idler 
modes produced by a non-degenerate 
parametric oscillator coupled to a two-
mode squeezed vacuum. 
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