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ABSTRACT 

In this work, a numerical scheme is proposed to solve Space Fractional Order Wave 

Equation (SFOWE). This approach uses shifted Chebyshev Polynomials of the fourth 

kind. The fractional derivatives are expressed in Caputo sense. Thereafter, the 

Chebyshev collocation method together with finite difference method were used to 

reduce the system of second order ordinary differential equations so obtained to a 

system of linear algebraic equations. These are then solved to obtain the unknown 

constants that are later substituted into the assumed solution to get the desired 

approximate solution which are presented in tabular form and 3D graphs. Comparison 

was made between the exact solution and the solution obtained using the proposed 

method. The results show that the proposed method compared favourably with the 

existing results in the literature. The approach advocated in the present work does not 

make use of any linearization procedure, nor does it makes use of implicit numerical 

scheme, and that makes it attractive than the earlier approaches in the literature. 

Keywords: Space Fractional Order, Fourth Kind Chebyshev Polynomial, Finite 

Difference Method, Collocation Method, Matrices, Gamma Function 

INTRODUCTION 

The field of fractional calculus is as old as Calculus itself, but in the last few decades, 

the usefulness of this mathematical theory in application as well as its merit in pure and 

applied mathematics has become more apparent (Kai & Neville, 2005). Fractional 

calculus is a field of applied mathematics that deals with the derivatives and integrals of 

arbitrary orders (Oldham & Spanier, 1974; Miller & Ross, 1993). 

In the last few years, there are many studies on fractional differential equations because 

of their significance in many areas like physics, medicine, and engineering (Hilfer, 

2000). The field of fractional calculus allows us to study fractal phenomena which can 

not be studied by the ordinary case (Liu et al., 2012). 

Fractional derivatives provide an excellent instrument for the description of memory 

and hereditary properties of various materials and processes (Press et al., 1992). It was 

also discovered that there are several other applications of the fractional differential 

equations as can be found in (Diethelm & Ford, 2004; Khader, 2011; Sweilam & Nagy, 

2011).  

The studied models have received a great attention in the field of viscoelsatic materials 

(Bagley & Calico, 1999), electrochemical process, (Ichise et al., 1971) control theory 

(Poulubny, 1999), advection and dispersion of solutes in natural porous or fractured 

media (Mark & Hall, 1981), signal processing and image filtering (Benson et al., 2000). 
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Seeking solution of fractional order differential equations is still a tedious task, except in 

a limited number of these equations. There is difficulty in finding their analytical as well 

as approximate solutions. Therefore, there have been a lot of attempts by many 

researchers to develop new methods for obtaining analytical and approximate solutions 

of these equations. As a result, several methods have been demonstrated for finding the 

numerical solution of these equations. For example, homotopy Analysis method 

(Hashim et al., 2009), Adomian decomposition method (Jafari & Daftardar-Gejji, 2006), 

homotopy perturbation method (Sweilam et al., 2008), collocation method (Tadjeran & 

Meerschaert, 2007; Khader & Babatin, 2013) and the references cited therein. 

Many authors tried to model diffusion and wave equations from the classical diffusion 

or wave equation by replacing the first or second order space derivative by a fractional 

derivative of order 𝜇 with 0 < 𝜇 < 2 see (El-Sayed, 1996; Mainardi et al., 2001; Al-

Sayed & Aly, 2002), while the use of Gengenbauer polynomial was employed for the 

solution of the same class of problems (Issa et al., 2022). 

This work is focused on the numerical solution of space fractional order wave equation 

by exploiting the accuracy of shifted Chebyshev Polynomials of the fourth kind. Fourth 

kind shifted Chebyshev Polynomials together with the fractional derivatives interpreted 

in Caputo sense is used to transform (SFOWE) into a system of second order ordinary 

differential equations using Finite Difference Method (FDM). The resulting system of 

linear algebraic equations are then solved for the unknown constants. 

STATEMENT OF THE PROBLEM 

The class of problem considered in this work is the space fractional order wave equation 

of the form: 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝜎(𝑥, 𝑡)

𝜕𝜇𝑢(𝑥, 𝑡)

𝜕𝑥𝜇
+ 𝜌(𝑥, 𝑡),                                                                               (1) 

on a finite domain 𝑎 < 𝑥 < 𝑏, 0 ≤ 𝑡 ≤ 𝑇. The parameter 𝜇 refers to the fractional order 

of partial derivative with 0 < 𝜇 < 2. The function 𝜌(𝑥, 𝑡) is a non-homogeneous source 

term and the coefficient function 𝜎(𝑥, 𝑡) ≥ 0.  We also assumed that the problem (1) is 

subject to the following initial conditions: 

𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑢𝑡(𝑥, 0) = 𝑢′(𝑥)                                                                                       (2) 

and the Dirichlet boundary conditions  

𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0.                                                                                                                 (3) 

It is immediately noticeable that the classical wave equation is recovered when 𝜇 = 2 in 

(1), that is 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝜎(𝑥, 𝑡)

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌(𝑥, 𝑡),                                                                                (4) 

MATERIALS AND METHODS 

The Caputo Fractional Derivative 

Let 𝐷𝛾  be the Caputo fractional derivative of order 𝛾 which is defined as 

 𝐷𝛾𝑓(𝑥) =
1

Γ(𝑛−𝛾)
∫ (𝑥 − 𝑡)𝑛−𝛾−1𝑓(𝑛)(𝑡)𝑑𝑡;    𝛾 > 0,                                                          (5)
𝑥

0
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where 𝑛 − 1 < 𝛾 < 𝑛, 𝑛𝜖𝑁,   𝑥 > 0. 
Like classical differential operator, Caputo derivative also satisfies the linearity 

property. Thus, 

𝐷𝛾(𝜉𝑓(𝑥) + 𝜂𝑔(𝑥)) =  𝜉𝐷𝛾𝑓(𝑥) + 𝜂𝐷𝛾𝑔(𝑥)                                                                      (6)  

where 𝜉 and 𝜂 are constants. For the Caputo derivative, the following results hold 

𝐷𝛾𝑥𝑝 = {

0,                                         𝑓𝑜𝑟  𝑝𝜖𝑁0  𝑎𝑛𝑑 𝑝 < ⌈𝛾⌉
Γ(𝑝 + 1)

Γ(p + 1 − γ)
𝑥𝑝−𝛾 , 𝑓𝑜𝑟 𝑝𝜖𝑁0  𝑎𝑛𝑑 𝑝 ≥ ⌈𝛾⌉,

                                              (7) 

where the function ⌈𝛾⌉ is the smallest integer greater than or equal to 𝛾 and 𝑁0 

represents the natural numbers including zero. 

Some Properties of Fourth Kind Chebyshev Polynomials 

In this section, some excellent properties of the fourth kind Chebyshev polynomials are 

highlighted. These include its derivation from trigonometric half-angle formula in the 

interval [-1,1], its shifted form and adaptation to fractional order terms. 

Chebyshev Polynomial of Fourth Kind in the Interval [-1, 1] and Its Equivalent in 

[a, b] 

The Chebyshev Polynomials 𝑊𝑚(𝑥) of the fourth kind are orthogonal polynomials of 

degree 𝑚 in 𝑥 defined on [-1, 1], takes the form  

 𝑊𝑚(𝑥) =
sin(𝑚 +

1

2
𝛼)

sin
1

2
𝛼 ,

⁄   

where 𝑥 = cos 𝛼 and 𝛼 𝜖 [0, 𝜋].  

The orthogonality of the fourth kind polynomials is shown as  

〈𝑊𝑚(𝑥),𝑊𝑝(𝑥)〉 = ∫ √
1 − 𝑥

1 + 𝑥

1

−1

𝑊𝑚(𝑥)𝑊𝑝(𝑥)𝑑𝑥 = {
0;𝑚 ≠ 𝑝
𝜋;𝑚 = 𝑝

 ,                       (8) 

where √
1−𝑥

1+𝑥
  is the weight function in the interval [−1,1]. The polynomial is generated 

through the recurrence relation 

𝑊𝑚+1(𝑥) = 2𝑥𝑊𝑚(𝑥) −𝑊𝑚−1(𝑥),   𝑚 ≥ 1,                                                        (9) 

with the initial terms 𝑊0(𝑥) = 1 and 𝑊1(𝑥) = 2𝑥 − 1.  

For the general interval [𝑎, 𝑏], the shifted Chebyshev polynomial of the fourth kind is 

obtained as 
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𝑊𝑚+1
∗ (𝑥) = 2 {

2𝑥−𝑎−𝑏

𝑏−𝑎
}𝑊𝑚(𝑥) −𝑊𝑚−1(𝑥),   𝑚 = 1,2,….                              (10)  

For the specific case where 𝑥 𝜖 [0,2], that is 𝑎 = 0 and 𝑏 = 2, we have the shifted form 

of (9) as 

𝑊𝑚+1
∗ (𝑥) = 2(𝑥 − 1)𝑊𝑚(𝑥) −𝑊𝑚−1(𝑥),   𝑚 ≥ 1,                                            (11) 

Thus, (8) becomes 

∫ √
2 − 𝑥

𝑥

2

0

𝑊𝑚
∗(𝑥)𝑊𝑝

∗(𝑥)𝑑𝑥 = {
0;𝑚 ≠ 𝑝
𝜋;𝑚 = 𝑝

 ,                                                       (12) 

and the corresponding weight is now √
2−𝑥

𝑥
 .                                                                                                

The analytical form of the shifted Chebyshev polynomials of the fourth kind 𝑊𝑚
∗(𝑥) of 

degree 𝑚 in 𝑥 is given by 

𝑊𝑚
∗(𝑥) = ∑(−1)𝑞2𝑚−𝑞

Γ(2𝑚 − 𝑞 + 1)

Γ(𝑞 + 1)Γ(2𝑚 − 2𝑞 + 1)
𝑥𝑚−𝑞

𝑚

𝑞=0

,   𝑚 ≥ 0.           (13) 

The function 𝑟(𝑥) which will be required in the solution of (1) can be written as series 

of 𝑊𝑚
∗  as 𝑟(𝑥) = ∑ 𝑏𝑗𝑊𝑗

∗(𝑥),∞
𝑗=0  where the coefficients 𝑏𝑗 , 𝑗 = 0,1,2, …, are generated 

by  

𝑏𝑗 =
1

𝜋
∫ 𝑟(𝑥)√

2 − 𝑥

𝑥

2

0

𝑊𝑗
∗(𝑥)𝑑𝑥.                                                                       (14) 

In practice, only the first (𝑛 + 1) terms of shifted Chebyshev polynomial of the fourth 

kind are considered in the approximation. Thus, we have 

𝑟𝑛(𝑥) =∑𝑏𝑗𝑊𝑗
∗(𝑥).                                                                                             (15) 

𝑛

𝑗=0

 

Evaluation of the Fractional Derivatives using Shifted Chebyshev Polynomial of 

the Fourth Kind  

In this section, an approximate formula for the evaluation of fractional derivatives in 

𝑟(𝑥) is derived. Suppose 𝑟(𝑥) is approximated with the aid of the polynomial by taken 

𝛼 > 0, and combining all that, with linearity property of Caputo differential operator, 

we have 

𝐷𝛼(𝑟𝑛(𝑥)) =∑𝑏𝑗𝐷
𝛼 (𝑊𝑗

∗(𝑥)).                                                                                  (16)

𝑛

𝑗=0
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It follows from the Caputo derivative given in (7), that 

𝐷𝛼 (𝑊𝑗
∗(𝑥)) = 0, 𝑗 = 0,1, . . . , ⌈𝛼 − 1⌉, 𝛼 > 0                                                     (17) 

And 

𝐷𝛼 (𝑊𝑗
∗(𝑥)) = ∑ (−1)𝑞21−𝑞

Γ(2𝑗 − 𝑞 + 1)

Γ(𝑞 + 1)Γ(2𝑗 − 2𝑞 + 1)
𝐷𝛼𝑥𝑗−𝑞                                (18)

𝑗−⌈𝛼⌉

𝑞=0

 

   Using (7) and (8), we have  

𝐷𝛼 (𝑊𝑗
∗(𝑥)) = ∑ (−1)𝑞21−𝑞

Γ(2𝑗 − 𝑞 + 1)Γ(𝑗 − 𝑞 + 1)

Γ(𝑞 + 1)Γ(2𝑗 − 2𝑞 + 1)Γ(𝑗 + 1 − 𝑞 − 𝛼)
𝐷𝛼𝑥𝑗−𝑞(19)

𝑗−⌈𝛼⌉

𝑞=0

 

Combining (16), (17) and (19) gives 

𝐷𝛼(𝑟𝑛(𝑥))

= ∑ ∑ 𝑏𝑗(−1)
𝑞2(1−𝑞)

Γ(2𝑗 − 𝑞 + 1)Γ(𝑗 − 𝑞 + 1)

Γ(𝑞 + 1)Γ(2𝑗 − 2𝑞 + 1)Γ(𝑗 + 1 − 𝑞 − 𝛼)
𝑥𝑗−𝑞−𝛼(20)

𝑗−⌈𝛼⌉

𝑞=0

𝑛

𝑗−⌈𝛼⌉

 

Which can as well be expressed as  

𝐷𝛼(𝑟𝑛(𝑥)) = ∑ ∑ 𝑏𝑗𝐹𝑗,𝑞
(𝛼)
𝑥𝑗−𝑞−𝛼 ,                                                                                 (21)

𝑗−⌈𝛼⌉

𝑞=0

𝑛

𝑗−⌈𝛼⌉

 

where 

𝐹𝑗.𝑞
(𝛼)

= (−1)𝑞2(1−𝑞)
Γ(2𝑗 − 𝑞 + 1)Γ(𝑗 − 𝑞 + 1)

Γ(𝑞 + 1)Γ(2𝑗 − 2𝑞 + 1)Γ(𝑗 + 1 − 𝑞 − 𝛼)
𝑥𝑗−𝑞−𝛼                    (22) 

To test for the accuracy of our formulae, we consider 𝑟(𝑥) = 𝑥3 with 𝑛 = 4 and 

𝛼 = 1.8.  
Using (4), we have  

𝐷1.8𝑥3 =
Γ(3 + 1)

Γ(3 + 1 − 1.8)
𝑥3−1.8 =

Γ(4)

Γ(2.2)
𝑥1.2 =

6

Γ(
11
5
)
𝑥
6
5.                                          (23) 

Now, using our proposed method given in (18) and (19), we have 

𝐷1.8𝑥3 =∑∑𝑏𝑗𝐹𝑗,𝑞
(1.8)

𝑥𝑗−𝑞−1.8                                                                                                

𝑗−2

𝑞=0

4

𝑗−2

 

𝐷1.8𝑥3 = 𝑏2𝐹2,0

9
5 𝑥

1
5 + 𝑏3𝐹3,0

9
5 𝑥

6
5 + 𝑏2𝐹3,1

9
5 𝑥

1
5 + 𝑏4𝐹4,0

9
5 𝑥

11
5 + 𝑏4𝐹4,1

9
5 𝑥

6
5 + 𝑏4𝐹4,2

9
5 𝑥

1
5 ,          (24) 
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where  

𝐹2,0

9

5 =
8

Γ(
6

5
)
, 𝐹3,0

9

5 =
48

Γ(
11

5
)
, 𝐹3,1

9

5 =
40

Γ(
6

5
)
, 𝐹4,0

9

5 =
384

Γ(
16

5
)
, 𝐹4,0

9

5 =
384

Γ(
16

5
)
 , 𝐹4,1

9

5 =
336

Γ(
11

5
)
  and 𝐹4,2

9

5 =

120

Γ(
6

5
)
 .  

 The constants 𝑏2, 𝑏3 and 𝑏4 are obtained by using (11) and then substituted back in (24) 

to get  

𝐷1.8𝑥3 =
5

8

8

Γ(
6
5
)
𝑥
1
5 +

1

8

48

Γ(
11
5
)
𝑥
6
5 −

1

8

40

Γ (
6
5
)
𝑥
1
5 =

40

Γ (
11
5
)
𝑥
6
5                                         (25) 

Since 𝑏2 =
1

4
 , 𝑏3 =

1

8
 and 𝑏4 = 0. 

Methodology  

Consider the fractional order wave equation given in (1), along with conditions (2) and 

(3). To implement Chebyshev collocation method, we shall let 𝑢(𝑥, 𝑡) be  

𝑢𝑛(𝑥, 𝑡) = ∑𝑢𝑗(𝑡)𝑊𝑗
∗(𝑥)

𝑛

𝑗=0

                                                                                                     (26) 

From (1), (21) and (22), we have  

∑
𝑑2𝑢𝑗(𝑡)

𝑑𝑡2
𝑊𝑗

∗(𝑥) = 𝜎(𝑥, 𝑡) ∑ ∑ 𝑢𝑗(𝑡)𝐹𝑗,𝑞
(𝛼)𝑥𝑗−𝑞−𝛼 + 𝜌(𝑥, 𝑡)

𝑗−⌈𝛼⌉

𝑞=0

𝑛

𝑗−⌈𝛼⌉

𝑛

𝑗=0

                             (27) 

 

Now, we shall collocate (27) at the points 

𝑥𝑝 = (𝑛 + 1 − ⌈𝛼⌉), 𝑝 = 0,1, . . .  , 𝑛 − ⌈𝛼⌉.                                                                            

as 

∑𝑢̈𝑗(𝑡)𝑊𝑗
∗(𝑥𝑗) = 𝜎(𝑥𝑝, 𝑡) ∑ ∑ 𝑢𝑗(𝑡)𝐹𝑗,𝑞

(𝛼)𝑥𝑗−𝑞−𝛼 + 𝜌(𝑥, 𝑡)

𝑗−⌈𝛼⌉

𝑞=0

𝑛

𝑗−⌈𝛼⌉

𝑛

𝑗=0

                                (28) 

where 𝑢̈(𝑡) has its usual interpretation as 
𝑑2𝑢

𝑑𝑡2
.  

In order to have the best choice of collocation points, we use the roots of shifted 

Chebyshev polynomial equation 𝑊𝑛+1−⌈𝛼⌉
∗ = 0. Applying the initial condition on (26) 

and using (11), we obtain the constants 𝑢𝑗 at the initial point 𝑡 = 0. Also, applying the 

boundary condition on (26) on the interval 0 < 𝑥 < 2 to get ⌈𝛼⌉ equations. That is, 
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∑(−1)𝑗𝑢𝑗(𝑡)

𝑛

𝑗=0

= 0, ∑(2𝑗 + 1)𝑢𝑗(𝑡) = 0

𝑛

𝑗=0

                                                                (29) 

(28) together with ⌈𝛼⌉ equations derived from the boundary conditions (29), give (n+1) 

system of ordinary differential equations which can be solved by using finite difference 

method to get the unknowns 𝑢𝑗 , 𝑗 = 0,1, … , 𝑛. 

Numerical Experiment 

In this section, the methods elucidated in the foregoing are put into use in solving space 

fractional order wave equation. 

Problem 

Consider the fractional order wave equation of the form 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝜎(𝑥, 𝑡)

𝜕1.8𝑢(𝑥, 𝑡)

𝜕𝑥1.8
+ 𝜌(𝑥, 𝑡)                                                                             (30) 

Defined on a finite domain 0 < 𝑥 < 2 and 𝑡 > 0 with coefficient functions 

𝜎(𝑥, 𝑡) = Γ(1.2)𝑥1.8                                                                                                                  (31) 

and the inhomogeneous source function 

𝜌(𝑥, 𝑡) = 4𝑒−𝑡𝑥2(2 − 𝑥) − 16𝑒−𝑡𝑥2 + 20𝑒−𝑡𝑥3                                                              (32) 

with initial conditions 

𝑢(𝑥, 0) = 4𝑥2(2 − 𝑥), 𝑢𝑡(𝑥, 0) = −4𝑥
2(2 − 𝑥)                                                       (33) 

and Dirichlet boundary conditions 

𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0.                                                                                                               (34) 

The exact solution to this problem is  

𝑢(𝑥, 𝑡) = 4𝑒−𝑡𝑥2(2 − 𝑥).                                                                                                        (35) 

Solution 

We shall now consider an approximate solution of the form 

𝑢𝑛(𝑥, 𝑡) =∑𝑢𝑗(𝑡)𝑊𝑗
∗(𝑥)

𝑛

𝑗=0

                                                                                                    (36) 

For 𝑛 = 3, we have  

𝑢3(𝑥, 𝑡) =∑𝑢𝑗(𝑡)𝑊𝑗
∗(𝑥)

3

𝑗=0

                                                                                                      (37) 
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Using (37) in (28), we have  

∑
𝑑2𝑢𝑗(𝑡)

𝑑𝑡2
𝑊𝑗

∗(𝑥𝑝) = 1,    𝑝 = 0,1.

3

𝑗=0

                                                                                     (38) 

Using (28) and (29), we obtain the following system of ordinary differential equations 

𝑢̈0(𝑡) + 𝑔1𝑢̈1(𝑡) + 𝑔2𝑢̈3(𝑡) = 𝑅1𝑢2(𝑡) + 𝑅2𝑢3(𝑡) + 𝜌(𝑥0, 𝑡)

𝑢̈0(𝑡) + 𝑔11𝑢̈1(𝑡) + 𝑔22𝑢̈3(𝑡) = 𝑅11𝑢2(𝑡) + 𝑅22𝑢3(𝑡) + 𝜌(𝑥1, 𝑡)

𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) = 0                                                     

𝑢0(𝑡) + 3𝑢1(𝑡) + 5𝑢2(𝑡) + 7𝑢3(𝑡) = 0                                            }
 

 

,                             (39) 

where 

𝑔1 = 𝑊1
∗(𝑥0),    𝑔2 = 𝑊3

∗(𝑥0), 𝑔11 = 𝑊1
∗(𝑥1),   𝑔22 = 𝑊3

∗(𝑥1), 𝑅1 = 𝜎(𝑥0, 𝑡)𝐹2.0
1.8𝑥0

1

5,

𝑅2 = 𝜎(𝑥0, 𝑡) {𝐹3.0
1.8𝑥0

6

5 + 𝐹3.1
1.8𝑥0

1

5} , 𝑅11 = 𝜎(𝑥1, 𝑡)𝐹2.0
1.8𝑥1

1

5, 𝑅22 = 𝜎(𝑥1, 𝑡) {𝐹3.0
1.8𝑥1

6

5 +

𝐹3.1
1.8𝑥1

1

5}.  

In order to solve system of equations (36) using finite difference method, we will use 

the notations 𝑡𝑖 = 𝑖Δ𝑡 for 𝑖 = 0, 1, …  , 𝑁, with Δ𝑡 =
𝑇

𝑁
  and 𝑇 = 𝑇𝑓𝑖𝑛𝑎𝑙 .  Also, we 

defined 

𝑢𝑖
𝑛 = 𝑢𝑖(𝑡𝑛), 𝜌𝑖

𝑛 = 𝜌𝑖(𝑡𝑛)                                                                                               (40) 

Then, the system (39) becomes 

 

𝑢0
𝑛+1 − 2𝑢0

𝑛 + 𝑢0
𝑛−1

(Δ𝑡)2
+ 𝑔1

𝑢1
𝑛+1 − 2𝑢1

𝑛 + 𝑢1
𝑛−1

(Δ𝑡)2
+ 𝑔2

𝑢3
𝑛+1 − 2𝑢3

𝑛 + 𝑢3
𝑛−1

(Δ𝑡)2

= 𝑅1𝑢2
𝑛+1 + 𝑅2𝑢3

𝑛+1 + 𝜌0
𝑛+1                                                                (41) 

𝑢0
𝑛+1 − 2𝑢0

𝑛 + 𝑢0
𝑛−1

(Δ𝑡)2
+ 𝑔11

𝑢1
𝑛+1 − 2𝑢1

𝑛 + 𝑢1
𝑛−1

(Δ𝑡)2
+ 𝑔22

𝑢3
𝑛+1 − 2𝑢3

𝑛 + 𝑢3
𝑛−1

(Δ𝑡)2

= 𝑅11𝑢2
𝑛+1 + 𝑅22𝑢3

𝑛+1

+ 𝜌0
𝑛+1                                                                                                      (42) 

𝑢0
𝑛+1 − 𝑢1

𝑛+1 + 𝑢2
𝑛+1 − 𝑢3

𝑛+1 = 0                                                                                         (43) 

𝑢0
𝑛+1 + 3𝑢1

𝑛+1 + 5𝑢2
𝑛+1 + 7𝑢3

𝑛+1 = 0                                                                                  (44)  

(41) - (44) can be written in matrix form as 
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(

1 𝑔1 −(Δ𝑡)2𝑅1 𝑔2 − (Δ𝑡)
2𝑅2

1 𝑔11 −(Δ𝑡)2𝑅11 𝑔22 − (Δ𝑡)
2𝑅22

1
1

−1
3

1
5

−1
7

)(

𝑢0
𝑢1
𝑢2
𝑢3

)

𝑛+1

= 

(

2 2𝑔1 0 2𝑔2
2 2𝑔11 0 2𝑔22
0
0

0
0

0
0

0
0

)(

𝑢0
𝑢1
𝑢2
𝑢3

)

𝑛

− (

1 𝑔1 0 𝑔2
1 𝑔11 0 𝑔22
0
0

0
0

0
0

0
0

)(

𝑢0
𝑢1
𝑢2
𝑢3

)

𝑛−1

+ (Δ𝑡)2 (

𝜌0
𝜌1
0
0

)

𝑛+1

                                                                                      (45) 

which is equivalent to  

𝑃𝑈𝑛+1 = 𝑄𝑈𝑛 − 𝑅𝑈𝑛−1 + (Δ𝑡)2𝑆𝑛+1                                                                               (46) 

𝑈𝑛+1 = 𝑃−1𝑄𝑈𝑛 − 𝑃−1𝑅𝑈𝑛−1 + 𝑃−1(Δ𝑡)2𝑆𝑛+1,                                                           (47) 

where 

𝑈𝑛 = (𝑢0
𝑛, 𝑢1

𝑛, 𝑢2
𝑛 , 𝑢3

𝑛)𝑇 and 𝑆𝑛 = ((Δ𝑡)2𝜌0
𝑛 , (Δ𝑡)2𝜌1

𝑛 , 0,0)𝑇 . 

To obtain the initial solution 𝑈0 of (47), we use initial condition of the problem 𝑢(𝑥, 0) 

combine with (11). We shall as well obtain 𝑈1 of (47), we use the initial condition of 

the problem 𝑢𝑡(𝑥, 0) as follows 

𝑢𝑡(𝑥, 0) =
𝑢𝑖,1 − 𝑢𝑖,0

Δ𝑡
,                                                                                                           (48) 

Then 

𝑢𝑖,1 = 𝑢𝑖,0 + Δ𝑡𝑢
′(𝑥𝑖),                                                                                                           (49) 

hence 

𝑈1 = 𝑈0 + Δ𝑡𝐺,                                                                                                                   (50) 

where 

𝐺 = 𝑢(𝑥𝑖).                                                                                                                             (51) 

The approximate solution is obtained by making substitution in the series (37). 
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RESULTS                                                                                                                                     

Table 1: Absolute errors for the problem solved using the proposed method for 

,
400

1
t  ,3n  and .1T   

𝑥 Exact solution Approximate solution Error = ∣Exact- Approx.∣ 
0.00 0 0 0 

0.20 0.2872808993 0.2853666054 1.914294
310   

0.40 1.0188927790 0.9747779627 4.411482
210   

0.60 2.0009365580 1.9862317000 1.470486
210   

0.80 3.0414330890 3.1096670040 6.823392
210   

1.00 3.9503112020 4.0900055000 1.396943
110   

1.20 4.5395818000 4.6852897270 1.457079
110   

1.40 4.6223961170 4.6992014000 7.752402
210   

1.60 4.0148937660 3.9929906310 2.190314
210   

1.80 2.5343312070 2.4617225700 7.260864
210   

2.00 0 0 0 

 

Table 2: Absolute errors for the problem solved using the proposed method for 

,
4000

1
t  ,3n  and .1T  

𝑥 Exact solution Approximate solution ∣Error =  Exact- Approx ∣ 
0.00 0 0 0 

0.20 0.2872808993 0.286354880 9.260113
410   

0.40 1.0188927790 1.0221455440 3.252765
310   

0.60 2.0009365580 2.0149684560 1.403190
210   

0.80 3.0414330890 3.0724231120 3.099002
210   

1.00 3.9503112020 4.0021090000 5.179780
210   

1.20 4.5395818000 4.6116256080 7.222980
110   

1.40 4.6223961170 4.7085724200 8.617630
210   

1.60 4.0148937660 4.1005489400 8.565517
210   

1.80 2.5343312070 2.5951546300 6.082342
210   

2.00 0 0 0 
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                                                  Figure 1: Exact solution graph 

 

                                           

Figure 2: Approximate solution graph for 
400

1
t  
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Figure 3: Approximate solution graph for 
4000

1
t  

DISCUSSION 

The tables 1 and 2 presented above depicts the relationship between the exact and the 

approximate solutions obtained using the proposed method for the case 3n at 

different step length Δ𝑡 = 0.0025 and Δ𝑡 = 0.00025 respectively. It is obvious that the 

result presented in column 4 of table 2 gives better approximation than that of column 4 

of table 1. This observation is in line with the general understanding in numerical 

analysis that whenever a problem is not stiff, the smaller the step-size, the better the 

result. Other works in related approach are either not solving wave equation, that is, 

problems with the two independent variables being of second order, or when they do, 

the approach used are entirely different. For example, Crank-Nicolson scheme was 

implemented in (Sweilam & Nagy, 2011), a class of finite difference method was 

implemented for the solution of two-sided fractional wave equation in (Sweilam et al. 

2011), etc. Meanwhile, their solutions could not be compared with ours for the obvious 

reasons of different approaches. The 3D graphs are for the exact solution, the 

approximate solution with the step-sizes 
1

400
 and 

1

4000
. It is observed that the accuracy of 

our solution is dependent of the step - size rather than the order of the given problem. 

CONCLUSION 

Numerical method of solving SFOWE has been proposed. The fractional derivative is 

interpreted in Caputo sense, with the given space fractional order PDE reduced to a 

system of second order ordinary differential equations. The system of second order 

ODEs thus obtained is reduced to a system of algebraic equations with the use of finite 

difference scheme and collocated at the roots of the shifted Chebyshev polynomials of 
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the fourth kind. The approximate solutions obtained through the method proposed in 

this work are compared with the exact solution, and it is obvious that the proposed     

method is reliable. All computations are carried out using Mathematica. 
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