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Abstract 

The concept of relativistic multipole expansion is applied to determine the multipole 

moments of the electric potential of a charged system moving at constant velocity with 

respect to a stationary observer. A system of discrete point charges and a charged plate of 

uniform surface charge density were considered for analysis. For relativistic 

considerations, two reference frames: namely S and Sˊ were chosen. Sˊ, which contains the 

charged system, is moving with constant velocity relative to frame S, to which stationary 

observer is attached. For easy comparison, both multipole expansions are expressed in 

terms of the coordinates of the Sˊ frame. The two observers in S and Sˊ, in general, 

calculate different expressions of multipole expansion for the same charged system 

because of Lorentz contraction effect. The multipole terms of the potential evaluated by 

the observer in S is time dependent. This shows that there are also magnetic effects, which 

are not observed by an observer in Sˊ. 

Keywords: Charge Density; Electric Potential; Magnetic Vector Potential; Multipole     

                    Expansion 

_________________________________________________________________________ 

INTRODUCTION 

The connection between electromagnetism and relativity is not as well understood as we 

would like to believe. Multipole expansion is one of the most important special techniques 

for solving electrostatic problems (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 

2015). Its importance originates from the fact that it gives more informative non-zero value 

of electrostatic potential even if the total charge of a given localized charge distribution is 

zero. Beyond electrostatics, multipole expansion has also a wide range of applications in 

various aspects of physics and mathematics such as magic cubes (Rogers and Loly, 2005), 

magnetostatics (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 2015), gravitational 

field (Blanchet, 1998), radiation (Nieminen et al., 2003), and others (Paolis et al., 1995; 

Gonzalez, 1998; Esbensen and Bertulani, 2002; Qian and Krimm, 2005; Taylor and Love, 

2009; Anandakrishnan et al., 2013; Zhou et al., 2016; Frutos-Alfaro and Soffel, 2018). 

Therefore, careful understanding of its concept and the possibility of its applications in 

various fields are crucial for scholars working in the area of electromagnetic theory. 

Multipole expansion of electric potential has been limited to cases in which the observer is 

at rest relative to the charged system and relativistic consideration of its multipole 

expansion has not been reported in literature. However, determination of the potential of a 

moving charged system with respect to an observer at rest in another frame of reference in 

a more informative way is quite interesting. Further concepts of multipole expansion such 
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as relativistic multipole moments of stationary space-times (Frutos-Alfaro and Soffel, 

2018) and multipole expansion for relativistic Coulomb excitation (Esbensen and 

Bertulani, 2002) have been reported in literature. However, the present problem is still not 

addressed in the reported research works.   

The retarded potential of a point charge q that is moving on a specified trajectory (Lienard-

Wiechert potentials) has been reported and even included on main reference books for 

electromagnetic theory (Griffiths, 1999; Jackson, 1999). Even though point charge can be 

regarded as the limit of an extended charge when the size goes to zero, Lienard-Wiechert 

potentials cannot be really applied when there is a system of moving point charges or 

extended charge distribution of significant size (Griffiths, 1999). 

Therefore, a simple and reliable technique of determining the relativistic multipole 

expansion of the electric potential is presented in this work. This gives the most important 

experience of computing multipole moments of the potential of a system of point charges 

or a uniformly charged rigid object moving at constant velocity with respect to an observer 

at rest. It is important to use the term ‘retarded potential’ if one is dealing with changing 

charge density, for example, the charge density prevailed at some retarded time 𝑡𝑟. 

However, throughout this article, non-changing charge density is considered and the term 

‘retarded potential’ is used. First, the theoretical model and method is presented and the 

mathematical formulation of the problem follows.  

THEORETICAL MODEL AND METHOD  

Consider two reference frames S and 𝑆 ˊ with origins at O and Oˊ, respectively, as shown 

below (Fig.1) and where we have 𝑆 ˊmoving with constant velocity v with respect to S. 

Suppose that, in the frame 𝑆 ˊ, there is a charge distribution that is localized in a volume V 

and characterized by a constant density 𝜌 at any time t.  
The displacements 𝐫ˊ and 𝐫ˊˊ locate an element of charge relative to Oˊ and O, respectively.  
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 Fig. 1: Two reference frames S and 𝑆 ˊ with origins at O and Oˊ, respectively. 𝑆 ˊ, 

containing a charge distribution that is localized in a volume V and characterized by a 

density 𝜌, is moving with constant velocity v with respect to S.  

The displacements R and 𝐑ˊ locate a point in space outside the charge distribution, where 

we wish to determine the scalar potential ϕ. If one attaches two observers at points O and 

Oˊ, then the observer at point Oˊ is stationary relative to the charge distribution. Therefore, 

the multipole expansion of the potential evaluated by this observer is the same as that 

reported in literature (Griffiths, 1999; Jackson, 1999; Neyfeh and Brussel, 2015). 

However, one may ask the question that: what is the multipole expansion of the potential 

as evaluated by and observer at point O? This is particularly interesting if v approaches the 

speed of light and hence the name relativistic multipole expansion is used in this context. 

Answering this question really advances electromagnetic theory one step forward and has a 

high contribution in broadening the conceptual understanding of both undergraduate and 

postgraduate students. Just to follow common approaches of solving problems in 

electromagnetic theory, both discrete and continuous charge distributions are used for 

analysis of the problem. 

 
   

RESULTS  

Consider Fig. 1, let us evaluate the multipole expansion of the potential with respect to 

point Oˊ for the arbitrary charge distribution localized in a rather small region of space in 

frame 𝑆 ˊ. This problem is discussed in detail (Neyfeh and Brussel, 2015). In this case, the 

potential ϕ(R) is given by: 

ϕ(R) =
1

4πε0

∫
dq

|𝐑 − 𝐫ˊ|
 .                                                                           (1) 
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Assuming 
|𝐫ˊ|

|𝑹|
≪ 1, the term in the integrand can be expanded as follows.  

1

|𝐑 − 𝐫ˊ|
=

1

|𝐑| {1 −
2𝐑. 𝐫ˊ

|𝐑|2
+ [

𝐫ˊ

𝐑
]
2

}

1
2

 .                                                      (2) 

Let us now write the binomial expansion,  

(1 + x)−
1
2 = [1 −

1

2
x −

1

2
(−

3

2
)
x2

2!
+ ⋯ ] , |x| < 1.                             (3) 

In equation (2), using  x =
2𝐑.𝐫ˊ

|𝐑|2
+ [

𝐫ˊ

𝐑
]
2

 and grouping the powers of  
|𝐫ˊ|

|𝑹|
 in ascending order,  

1

|𝐑 − 𝐫ˊ|
=

1

|𝐑|
{1 +

�̂�. 𝐫ˊ

|𝐑|
+

1

2
[3 (

�̂�. 𝐫ˊ

|𝐑|
)

2

− [
𝐫ˊ

𝐑
]

2

] + ⋯ },                  (4) 

Therefore, the potential becomes,  

ϕ(𝐑) =
1

4πє0

1

|𝐑|
∫dq +

1

4πє0

1

|𝐑|2
�̂�.∫ 𝐫ˊdq

+
1

4πє0

1

|𝐑|3
∫[

3(�̂� − 𝐫ˊ)
2
− (𝐫ˊ)

2

2
] dq.                    (5) 

ϕ(𝐑) = (ϕ(0))
ˊ
+ (ϕ(1))

ˊ
+ (ϕ(2))

ˊ
+ ⋯,                                               (6) 

Where (ϕ(0))
ˊ
, (ϕ(1))

ˊ
and (ϕ(2))

ˊ
are the monopole, dipole and quadrupole terms, 

respectively. This is the multipole expansion of the potential calculated by an observer at 

point Oˊ at rest relative to the localized charge distribution and is an obvious result reported 

in several reference books of electromagnetic theory (Griffiths, 1999; Jackson, 1999; 

Neyfeh and Brussel, 2015). Now consider an interesting situation in which the observer at 

point O evaluates the multipole expansion for the same localized charge distribution, 

which however, is moving with constant velocity v along positive x-axis. For the observer 

attached with Sˊ (at point Oˊ), the  displacement vector between the localized charge dq and 

a point in space outside the charge distribution where we wish to determine the scalar 

potential ϕ is 𝐑 − 𝐫ˊ. But, for an observer attached with S (at point O), this displacement 

vector measures 𝐑ˊ − 𝐫ˊˊ and is different from 𝐑 − 𝐫ˊ due to length contraction
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For an observer at point O, equation (5) becomes,  

ϕ(𝐑ˊ) =
1

4πє0

1

|𝐑ˊ|
∫ dq +

1

4πє0

1

|𝐑ˊ|2
𝐑ˊ̂. ∫ 𝐫ˊˊdq

+
1

4πє0

1

|𝐑ˊ|3
∫[

3(𝐑ˊ̂ − 𝐫ˊˊ)
2
− (𝐫ˊˊ)

2

2
] dq.               (7) 

ϕ(𝐑ˊ) = ϕ(0) + ϕ(1) + ϕ(2) + ⋯.                                                               (8) 

 

Where ϕ(0), ϕ(1) and  ϕ(2) are the monopole, dipole and quadrupole terms, respectively, 

as evaluated by this observer. This is not much interesting since the effect of the Lorentz 

contraction on the multipole expansion is not observed here. Moreover, it is difficult to 

compare the two expansions (5) and (7). Hence, let us take another illustrative view by 

focusing on the displacement vector 𝐑ˊ − 𝐫ˊˊ. For an observer at point Oˊ, 

𝐑 = Rxi + Ryj + Rzk,                                                                                  (9) 

𝐫ˊ = rˊ
x i + rˊ

y j + rˊ
z k,                                                                           (10) 

However, for an observer at point O,  

𝐑 =
Rx

γ
i + Ryj + Rzk,                                                                                 (11) 

𝐫ˊ =
 rˊ

x

γ
 i + rˊ

y j + rˊ
z k,                                                                           (12) 

Where γ =
1

√1−
v2

c2

. 

Note that only the components of the vectors parallel to the velocity v of the Sˊ frame are 

Lorentz contracted. Therefore,  

𝐑ˊ − 𝐫ˊˊ = (
Rx

γ
i + Ryj + Rzk) − (

 rˊ
x

γ
 i + rˊ

y j + rˊ
z k).                (13) 

Moreover, at any time t,  

𝐫ˊˊ
𝑥 =

rˊ
x

γ
+ vt,                                                                                          (14) 

Therefore, 𝐫ˊˊ = (
rˊ

x

γ
+ vt) i + rˊ

y j + rˊ
z k,                                         (15) 

Hence 𝐑ˊ can be expressed as  

𝐑ˊ = [(
Rx

γ
i + Ryj + Rzk) − (

rˊ
x

γ
 i + rˊ

y j + rˊ
z k)] + 𝐫ˊˊ.             (16) 
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𝐑ˊ = [(
Rx

γ
i + Ryj + Rzk) − (

 rˊ
x

γ
 i + rˊ

y j + rˊ
z k)] + (

rˊ
x

γ
+ vt) i + rˊ

y j + rˊ
z k.      (17) 

𝐑ˊ = (
Rx

γ
+ vt) i + Ryj + Rzk.                                                                                                    (18) 

Now, with the obtained expressions of 𝐫ˊˊ and  𝐑ˊ, equation (7) can readily be expressed in 

terms of the coordinates of the Sˊ frame and this allows us easily compare the two 

expansions. Hence, the monopole, dipole, and quadrupole terms of equation (5) are given 

by 

(ϕ(0))
ˊ
=

1

4πє0

1

|𝐑|
∫dq =

1

4πє0

1

|𝐑|
Q,                                                                                  (19) 

Where Q is the total net charge of the discrete charge distribution. 

(ϕ(1))
ˊ
=

1

4πє0

1

|𝐑|2
�̂�. ∫ 𝐫ˊdq.                                                                                                (20) 

(ϕ(2))
ˊ
=

1

4πє0

1

|𝐑|3
∫[

3(�̂� − 𝐫ˊ)
2
− (𝐫ˊ)

2

2
] dq.                                                                (21) 

Similarly, the monopole, dipole, and quadrupole terms of equation (7) are given by, 

ϕ(0) =
1

4πє0

1

|𝐑ˊ|
∫ dq =

1

4πє0

1

√(
Rx

γ
+ vt)

2

+ (Ry)
2
+ (Rz)

2

∫dq.                         (22) 

=
1

4πє0

1

√(
Rx

γ
+ vt)

2

+ (Ry)
2
+ (Rz)

2

Q,                                                                          (23) 

Where Q is also the total net charge of the discrete charge distribution. 

ϕ(1) =
1

4πє0

1

|𝐑ˊ|2
𝐑ˊ̂. ∫ 𝐫ˊˊdq.                                                                                               (24) 

 

=
1

4πє0

1

(
Rx

γ
+ +vt)

2

+ (Ry)
2
+ (Rz)

2

×
(
Rx

γ
+ vt) i + Ryj + Rzk

√(
Rx

γ
+ vt)

2

+ (Ry)
2
+ (Rz)

2

. ∫((
rˊ

x

γ
+ vt) i + rˊ

y j + rˊ
z k)dq                   (25) 
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ϕ(2) =
1

4πє0

1

|𝐑ˊ|3
∫[

3(𝐑ˊ̂ − 𝐫ˊˊ)
2
− (𝐫ˊˊ)

2

2
] dq.                                                              (26) 

 

=
1

4πє0

1

((
Rx

γ
+ vt)

2

+ (Ry)
2
+ (Rz)

2)

3
2

× ∫

[
 
 
 
 
 
 
 
 
 
 
 
 
 

3

(

 
 
 
 

(
Rx

γ
+ vt) i + Ryj + Rzk

√(
Rx

γ
+ vt)

2

+ (Ry)
2
+ (Rz)

2

− ((
rˊ

x

γ
+ vt) i + rˊ

y j + rˊ
z k)

)

 
 
 
 

2

− ((
rˊ

x

γ
+ vt) i + rˊ

y j + rˊ
z k)

2

2

]
 
 
 
 
 
 
 
 
 
 
 
 
 

dq  (27) 

 

DISCUSSION 

From the above results, it can be clearly seen that the expressions of the monopole, dipole, 

and quadrupole terms calculated by the two observers at O and Oˊ are in general different 

from one another. The multipole terms are only position dependent for an observer at point 

Oˊ, but they are both position and time dependent for an observer at O. In both cases, the 

presence of the monopole term indicates that far enough away the charge distribution in 

the lowest-order approximation looks like a point charge. Therefore, it is clearly observed 

that there is time dependence in the potential expansion for one observer and not for the 

other. This suggests that there are also magnetic effects observed in one frame not 

observed in the other. In particular, the time dependence of the multipole terms for an 

observer at O shows the observation of magnetic effects and this is not seen for an 

observer at Oˊ. For an observer at O, the magnetic field can be evaluated form the 

expression 𝐁 = 𝛁 × 𝐀, where A is the magnetic vector potential which can further be 

calculated form the following expression (Griffiths, 1999). 

𝐀 =
𝜇0

4𝜋
∫

𝐉(𝒓ˊˊ)𝑑𝑉

|𝑹ˊ−𝒓ˊˊ|
,                                                                                       (28) 

Where, 

𝐉 = ρ0

𝐯

√1 −
v2

c2

.                                                                                              (29) 

and ρ0 is the proper charge density (Griffiths, 1999). 
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Let us consider the case where there is a continuous charge distribution within the volume 

V. In particular, imagine a thin plate of length L and width W with charge per unit area 

(surface charge density) 𝜎0 at rest in frame 𝑆 ˊ with its length oriented parallel to the 

velocity v of the frame 𝑆 ˊ. Since charge is invariant, the two observers at points O and 𝑂ˊ 

measure the same charge both for the case of discrete and continuous surface charge 

distributions within the volume V. This means that the two observers measure the same 

charge on the thin plate of length L and width W. Wait a minute! Do they still measure the 

same charge density on the plate? Obviously, no. This is because of the fact that the two 

observers measure different lengths of the thin plate. For observer at point O, the length L 

is Lorentz contracted by a factor of:  

γ =
1

√1 −
v2

c2

.                                                                                                      (30) 

Therefore, for this observer, the charge per unit area is increased by a factor of 𝛾. The 

charge density of the plate as viewed from point O is,   

σ = γσ0, or Q = σA = γσ0A.                                                                        (31) 

Where A is the area as measured from point O. If Qˊ is the charge on the plate as measured 

by observer at Oˊ, then Qˊ = σ0A
ˊ = γσ0A, since Aˊ = γA. Therefore,  Qˊ = Q and this 

confirms that equation (7) holds true for any arbitrary charge distribution.  

 

CONCLUSION   

Using relativistic multipole expansion, the 

multipole moments of the electric potential 

of a charged system moving at constant 

velocity with respect to a stationary 

observer are determined. The two observers 

attached to points O and Oˊ, in general, 

calculate different expressions of multipole 

expansion for the same charged system 

because of Lorentz contraction effect. It is 

clearly observed that there is time 

dependence in the potential expansion for 

one observer and not for the other. This 

suggests that there are also magnetic effects 

observed in one frame not observed in the 

other.  

In summary, the manuscript tried to 

address a very problematic and subtle 

subject of the multipole moments of the 

electric potential of a charged system 

moving at constant velocity with respect to 

a stationary observer. In particular, 

different expressions of multipole 

expansion for the charged system are 

examined using non-trivia mathematical 

steps. Therefore, we strongly recommend 

scholars working in the field of 

electromagnetic theory to further 

investigate this subtle issue and include it 

in their postgraduate lessons.  
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