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ABSTRACT 

A non-polynomial spline method is formulated for solving nonlinear two-point 

boundary value problems. The theoretical convergence of the method is investigated 

and well established. To demonstrate the applicability of the method, some model 

problems are considered and solved for different values of the mesh size h. Moreover, 

the accuracy of the method also shown by the means of numerical experimentation and 

it is observed that the proposed method is more accurate than some methods reported 

in the literature.    
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INTRODUCTION  

The subject of nonlinear differential equations is 

well established as part of mathematics and its 

systematic development goes back to the early 

days of the development of calculus (Abd-

Elhameed et al., 2015). Many problems in 

science and technology are formulated in linear 

or nonlinear boundary value problems of the 

second order ordinary differential equations 

with various types of boundary conditions as in 

heat transfer, deformation of beams, heat power 

transmission, boundary layer theory, and 

deflection in cables and the modeling of 

chemical reaction. Numerical simulation in 

engineering, science and in applied mathematics 

has become a powerful tool to model the 

physical phenomena, particularly when 

analytical solutions are not available or very 

difficult to obtain analytical solution, (Rahman 

et al., 2012; Zanariah et al., 2013; Osama et al., 

2015; Zurni and Oluwaseun, 2016a; Zurni and 

Oluwaseun, 2016b). 

The general form of second order nonlinear 

two-point boundary value problems are given in 

the form of: 

 
2

2
, ,

d y dy
f x y

dxdx

 
  

 
,    a x b   

    (1)  

subject to the  boundary conditions: 

       
1 2( ) and ( )y a y b        

    (2) 

where, 1, ,a b   and 2  are given constants 

with the unknown function ( )y x . Most of the 

time, the boundary value problem of Eq. (1) 

with one of the boundary conditions of Eq. (2) 

can be re-written as the governing equation of: 

  

2

2
( ) ( ) ( ) ( )

d y dy
p x q x F y g x

dxdx
      

   (3)  

Where, ( ), ( )p x q x and ( )g x are smoothly 

continuous function for every [ , ]x a b .  

Here, Eq. (3) may be linear or nonlinear 

boundary value problems depending on the 

function ( )F y . That is, if the function ( )F y is 

linear function of y , then Eq. (3) is linear; 

otherwise it is nonlinear. Similar to the case of 

initial value problems, boundary value problems 

sometimes have more than one solution or the 

solution may not exist. In recent years, many 

numerical methods have been developed by 

different scholars for solving linear and 

nonlinear second order ordinary differential 

equations with boundary value problems. For 

instance: Galerkin method with Hermite 

polynomials by Rahman et al. (2012); block 

method by Zanariah et al. (2013); new fourth 

order quartic spline method by Osama et al. 

(2015); shooting method by Mizanur et al. 

(2015); Galerkin residual  

method using Legendre polynomials by Hossain 

et al. (2015); five order block method and two-

step block method with starting and non-starting 

values by Zurni and Oluwaseun (2016); and 

quintic spline method by Osama et al. (2016).  

Modeling of the real life phenomena in most 

cases leads to nonlinear second order ordinary 

differential equations that may be difficult to 

solve analytically. Hence, several numerical 

methods had been developed to solve the 

nonlinear second order two-point boundary 

value problems, due to its importance in 

different areas of the real life phenomena. 

However, the development of appropriate 

methods for solving these problems is not 

exhausted and still demanding for more 

accuracy and simplicity. Therefore, it is very 

important to formulate an alternative numerical 

method that is simple, convergent and more 

accurate for solving the nonlinear second order 

two-point boundary value problems. 
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MATERIAL AND METHOD 

Formulation of the Method 

Consider the nonlinear second order two-point boundary value problems of the form: 

 ( ) , ( ), ( ) ,y x f x y x y x a x b       (4) 

subject to the boundary conditions  

1 2( ) , ( )y a y b   .      (5) 

To treat the problem, we first apply the quasi-linearization technique (Bellman and 

Kalaba, 1965) and linearize Eq. (4). By choosing a reasonable initial approximation for 

the function ( )y x  in  , ,f x y y , call it as (0) ( )y x and expand  , ,f x y y around the 

function (0) ( )y x , we obtain:  

   

 

(0) (0)

(0) (0)

(1) (1) (0) (0) (1) (0)

( , , )

(1) (0)

( , , )

, , ( , , )
x y y

x y y

f
f x y y f x y y y y

y

f
y y

y





 
     

 

 
    

 

 

In general, we can write for 0,1,2,k   ( k  is iteration index), 

   

 

( ) ( )

( ) ( )

( 1) ( 1) ( ) ( ) ( 1) ( )

( , , )

( 1) ( )

( , , )

, , ( , , )
k k

k k

k k k k k k

x y y

k k

x y y

f
f x y y f x y y y y

y

f
y y

y

  







 
     

 

 
    

 

  (6) 

      

 

Thus, after the linearization process Eqs. (4) and (5) becomes:  

( ) ( )
( 1) ( 1) ( 1)

( ) ( )
( ) ( ) ( )

( ) ( )

,

k k
k k k

k k
k k k

f f
y x y x y

y y

f f
f y y

y y

      
     

    

    
     

    

  

 (7) 

for 0,1,2,k  , where

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( , , ) ( , , )

( , , ), ,
k k k k

k k
k k k

x y y x y y

f f f f
f f x y y

y y y y
 

      
     

       
 

With  
( 1) ( 1)

1 2( ) and ( )k ky a y b    .     (8) 
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This implies that the non-linear differential equation in Eqs. (4) and (5) becomes linear 

in ( 1)ky  . Solving sequence of linear differential equation given by Eqs. (7) and (8), we 

can get the approximate solution to the original problem in Eqs. (4) and (5).  

Now, in order to develop the non-polynomial spline approximation for the second-

order type boundary value problem in Eqs. (7) and (8), the interval [ , ]a b  is divided 

into N equal sub-intervals. For this, we introduce the set of grid points

0 , 0,1,2,...,ix x ih i N   , so that,  

0 1 1N Na x x x x b      , where 
b a

h
N


 .  

Let ( 1) ( )ky x  be the exact solution of the Eqs. (4) and (5) and ( 1)k

iy   be an 

approximation to ( 1) ( )k

iy x , obtained by the segment ( )S x
 of the spline function 

passing through the points ( 1)( , )k

i ix y   and ( 1)

1 1( , )k

i ix y 

 
from Eqs. (7) and (8) at 

( 1)thk   iteration. For each 
thi  segment, let us consider the non-polynomial spline 

function ( )S x
 in subinterval  1, ,i ix x 

 0,1,2, , 1i N  of the form: 
       

 

   
         

sin ( ) cos

i i i i

i i i i

w x x w x x w x x w x x

i i

S x a w x x b w x x

c e e d e e



     

    

      
(9)      

Where, , ,i i ia b c  and
 id

 
are constants to be determined and 0w   is a parameter 

which is used to raise the accuracy of the method.  

To determine the unknown coefficient in Eq. (9), let us denote: 

  ( 1)k

i iS x y 

  ,    ( 1)

1 1

k

i iS x y 

    ,   i iS x M
   ,  1 1i iS x M  

      (10) 

Differentiating Eq. (9) successively, we get: 

 
 

         

cos ( ) sin ( )

i i i i

i i i i

w x x w x x w x x w x x

i i

S x a w w x x b w w x x

c w e e d w e e



     

     

  

 

(11) 

 
         

2 2

2 2

sin ( ) cos ( )

i i i i

i i i i

w x x w x x w x x w x x

i i

S x a w w x x b w w x x

c w e e d w e e



     

      

    
(12) 

Using relations in Eqs. (10) and (12), we have: 

   

  2 22i i i iS x M b w d w         

which in turn resulted in     

2
2 i

i i

M
d b

w
 

      

(13) 

Again, using the relation in Eq. (10), Eq. (13) into Eq. (9) at the point ix , we obtain:  

  ( 1) 2k

i i i iS x y b d  

 
and it gives 
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2 ( 1)

22

k

i i

i

w y M
b

w

 


     

(14) 

Substituting Eq. (14) into Eq. (13), we get: 

2 ( 1)

24

k

i i

i

M w y
d

w




     

(15) 

Using the relation in Eq. (10), Eq. (14) in Eq. (12) at the point 
1ix 
 and letting wh  , 

we have: 

   
2 ( 1)

1

2 2
sin cos

2

k

i i i

i i i

M M w y
a c e e d e e

w w



 
 

       
 

      (16) 

Using the relation in Eq. (10), Eq. (14) in Eq. (9) at the point
1ix 
, we have: 

   
2 ( 1)

( 1)

1 2
sin cos

2

k

k i i

i i i i

w y M
y a c e e d e e

w



  



 
      

 

    

 

(17) 

Subtracting Eq. (16) from Eq. (17), we obtain: 

2 ( 1) 2 ( 1)

1 1

2

( )cos

2 sin

k k

i i i i

i

w y M M w y
a

w

 

   




    
(18) 

Adding Eq. (16) and (17), we obtain: 

   
2 ( 1)

1 1

2
2 2

k

i i

i i

w y M
c e e d e e

w



  
      

  
(19) 

Substituting Eq. (15) into Eq. (19), we get: 

    
 

2 ( 1) 2 ( 1)

1 1

2

2

4

k k

i i i i

i

w y M M w y e e
c

w e e

  

 



   




 

 

  

(20) 

Using the continuity condition of the first derivative at
ix , that is    1 i iS x S x 

  , 

we have, 

   1 1 1 1cos sin 2i i i i i ia b c e e d w e e a c

                 (21)  

Reducing indices of Eqs. (14), (15), (18) and (20) by one and substituting into Eq. (21) 

and simplifying, we obtain: 
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( 1) ( 1)

1

2 2
( 1)

1 12 2

2 2

2 2

2 2

2 2

1 1 cos

2sin sin( ) ( )

1 1

2sin ( ) 2 sin ( )

cos ( )

sin ( )

2 sin (

k k

i i

k

i i

i

e e
y y

e e e e

h h
y M

e e e e

h h e e
M

e e

h h

e e


 

 



  







   
    

    

   
     

    

 
  

 


 



 

   

   

 

 





 

   



  

  
1

)
iM 

 
 
 



 

which implies  

 ( 1) ( 1) ( 1) 2

1 1 1 1

k k k

i i i i i iy y y h M M M  

          

     

(22)

 

where,  

 2

2sin

2sin

e e

e e





 


 

 

 




 
,    

 
 2

2 (cos sin ) (sin cos )

2sin

e e

e e





   


 

 

 

   


 
,

 
 2 (cos sin ) (sin cos )

2sin

e e

e e





  


 

 

 

   



.

 

As 0 ,  
1 4

, , , , 2
6 6

 
  

 
    and then spline relation defined in Eq. (22) 

reduces to a polynomial cubic spline relation in Millar et al. (1996).

   Now rewriting Eq. (7) and evaluating at the nodal points ix , we have:  

( 1) ( ) ( 1) ( ) ( 1) ( )k k k k k k

i i i i i iy p y q y r     

   

(23)

 where

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ), and
k k k k

k k k k k ki i i i

i i i i i i

f f f f
p q r f y y

y y y y

      
       

       
. 

Using spline’s second derivatives in Eq. (10) at         iteration, we have:  

( 1) ( ) ( 1) ( ) ( 1) ( )k k k k k k

j j j j j jM p y q y r      for  1, , 1j i i j  
  

(24) 

Using the following approximations for the first derivative of
( 1)k

iy 
, (Bawa, 2005): 

 

( 1) ( 1) ( 1)

( 1) 1 1

1

4 3

2

k k k

k i i i

i

y y y
y

h

  

  



  
  ,     (25) 

( 1) ( 1) ( 1)

( 1) 1 1

1

3 4

2

k k k

k i i i

i

y y y
y

h

  

  



 
  ,    (26) 
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2 ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( 1)1 1 1

1 1 1

2 ( ) ( ) ( )

( 1) ( ) ( )1 1 1

1 1 1

1 2 (3 )
2 ( )

2

1 2 ( 3 )
( )

2

k k k

k k k k ki i i

i i i i i

k k k

k k ki i i

i i i

h q h p p
y y p p y

h

h q h p p
y h r r

h

    

  

  

  

   
    

 

   
   
 

 


 


  (27) 

where   is a parameter used for increasing the accuracy of the computed solution.  

Remark 1: If 2 and 0   , the present method reduces to the method of Aziz and 

Khan (2002).  
Substituting Eqs. (24) - (27) into Eq. (22) and rearranging, we obtain the three-term 

recurrence relation of the form: 

( ) ( 1) ( ) ( 1) ( ) ( 1) ( )

1 1 ,k k k k k k k

i i i i i i iE y F y G y H  

    1,2, 1i N 

  

(28) 

Where,  

 

( ) ( ) 2 ( ) ( ) 3 ( ) ( )

1 1 1

2 ( ) ( ) ( ) ( )

1 1 1

3 1
1

2 2

1 1
3

2 2

k k k k k k

i i i i i i

k k k k

i i i i

E hp h q hp h p q

h p p p hp

  

  

    

  

   

 

 ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( )

1 1 1 12 2 2k k k k k k k

i i i i i i iF hp h p p p h q hp            

 
 ( ) ( ) ( ) 3 ( ) ( ) 2 ( ) ( ) ( )

1 1 1 1

( ) 2 ( )

1 1

1 1 1
1 3

2 2 2

3

2

k k k k k k k k

i i i i i i i i

k k

i i

G hp hp h p q h p p p

hp h q

   

 

     

 

   

   

    ( ) 2 ( ) ( ) ( ) ( ) ( )

1 1

k k k k k k

i i i i i iH h hp r r hp r         

 
Using discrete imbedding algorithm, the tri-diagonal system in Eq (28) in order to 

obtain the approximations ( 1) ( 1) ( 1)

1 2 1, , ,k k k

Ny y y  


 of the solution ( )y x  at

1 2 1, , , Nx x x 
.

  
Convergence Analysis 

 

 

In this section, we investigate the convergence analysis of the proposed method. For 

this, let ( 1) ( 1) ( ),k k

iY y x  ( 1) ( 1) ,k k

iY y  , ,i iD d T t  ( 1) ( 1)k k

iE e Y Y     

for 1,2, , 1i N  , where ( 1) ( 1), , andk kY Y T E   are exact solution, 

approximate solution, local truncation error and discretization error respectively at 

        iteration.  

Putting the tri-diagonal system in Eq. (28) in matrix vector form:  

 2 ( 1)kA B h C Y D         (29) 

where  
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1 0 ... 0

1 1 ... 0

0 1 1

1 1

0 ... 1

A 

 
 


 
 
 
 
 
 

  










 

,

    

1 1

2 2 2

3 3 3

2 2 2

1 1

0 ... 0

... 0

0

0 ...

N N N

N N

C

M K

L M K

L M K

L M K

L M

  

 



 
 
 
 
 
 
 
 
  

 and

 

3

1 1 1

3 3

2 2 2 2 2

3 3

3 3 3 3 3

3 3

2 2 2 2 2

3

1 1 1

0 ... 0

... 0

0

0 ...

N N N N N

N N N

B

hV hW h Z

hU h X hV hW h Z

hU h X hV hW h Z

hU h X hV hW h Z

hU h X hV

    

  



 
 

  
  
 
 
  
 
  

are of order      , where  

   

   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1

( ) ( ) ( ) ( )

1 1 1

1 1
3 , 2 ( ), 3

2 2

1
3 , 2 ,

2

1
3 ,

2

k k k k k k k k

i i i i i i i i i i i

k k k k k k k k

i i i i i i i i i i

k k k k

i i i i i i

U p p p V p p W p p p

L q p p p M p p p q

L q p p p X

     

    

  

       

      

    

      

   

   ( ) ( ) ( ) ( )

1 1,k k k k

i i i i ip q Z p q  

and the      column vector ( )iD d  is given by: 

( ) ( )

1 1 1

( )

( ) ( )

1 1 2

, 1

, 2 2

, 1

k k

k

i i

k k

N N

H E i

d H i N

H G i N 

  


   


  





. 

Now, considering the above system with exact solution

( 1) ( 1) ( 1)

1 2( ), ( ),k k kY y x y x   
( 1)

1, ( )
T

k

Ny x


 , we have,  

 2 ( 1) ( )kA B h C Y T h D   
   

(30) 

where  1 2 1( ) ( ), ( ), , ( )
T

NT h t h t h t h  is the local truncation error associated 

with the scheme in Eq. (28) which is given by, 
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2 ( 1)

4 ( ) ( 1) (4) ( 1)

6 ( ) (5) ( 1) (6) ( 1)

( ) (2 ) (2 1) ( )

2 1 1
2 ( ) ( ) ( )

3 6 12

1 1
( ) ( ) ( )

15 3 120 12 360

k

i i i

k k k

i i i

k k k

i i i

t h y h y x

h p x y x y x

h p x y y



 

 

     

      
         

      

      
        

    

  

   

  
  





 (31) 

for 
1 1i i ix x   . 

Thus, for different values of , , and     in the scheme of Eq. (28), the following 

different orders of the method can be obtained. 

i. For any choice of arbitrary and  with 2 1, 2      and for any 

value of , the scheme of Eq. (28) gives the second-order method. 

ii. For choice 
1 10 1

, , 2 and
12 12 20

        , the scheme of Eq. (28) 

gives the fourth-order method, and Eq. (31) becomes: 

( )

6 (5) ( 1) (6) ( 1)( ) 1
( ) ( ) ( )

80 240

k

k ki

i i i

p x
t h h y y 

 
  

 
 

  

(32) 

Subtracting Eq. (29) from Eq. (30), we get: 

( )PE T h

      

(33) 

where 
2P A B h C      and    ( 1) ( 1)

1 2 1, , ,
Tk k

NE Y Y e e e 

   . 

Let 
iS  be the 

thi  row sum of the matrix P , then we have:  

 ( ) ( ) ( )

1 1 1

( )

2 ( ) ( ) ( ) ( ) 3

1 1 1

1 3
2

( 3 ) ( )
2

k k k

i i i

k

k k k ki

i i i i

h
S p p p

p
h p p q q O h

 

  

    

 
     

 

   


 

, 1i      (34) 

 2 ( ) ( ) ( ) 3

1 12 ( )k k k

i i i iS h q q q O h          , 2,3, , 2i N 
 

(35) 

 ( ) ( ) ( )

1 1 1

( )

2 ( ) ( ) ( ) ( ) 3

1 1 1

1 3
2

(3 ) ( )
2

k k k

N i i i

k

k k k ki

i i i i

h
S p p p

p
h p p q q O h

  

  

     

 
    

 

   


 

,   1i N     (36) 

For sufficiently small h , the matrix   is monotone, (Young, 1971). It follows that 
1P
 

exists and its elements are nonnegative.  

Hence, from Eq. (33), we have:  

1 1( ) and ( )E P T h E P T h  

   

(37) 
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Let 
,i jp  be the ( , )thi j  element of the matrix 

1P
 and define, 

1
1

,
1 1 1 1

1

max and ( ) max ( )
N

i j i
i N i N

j

P p T h t h




     


 

  

(38) 

Since
, 0i jp  , from the properties of monotone and non-negative matrices, we have: 

1

,

1

1, for 1,2, , 1
N

i j j

j

p S i N




  

  

(39) 

Hence, from Eqs. (34) – (36), we have:  

,1 2

1

1 1

( )
ip

S h Q
 

 
,   for        (40) 

, 1 2

1

1 1

( )
i N

N

p
S h Q





 
 

, for         (41) 

Further, 

2

, 2
2

2 2

1 1

min (2 )

N

i j

j j
j N

p
S h Q




  

 



 

 

,

    

(42) 

where, 
( ) ( )

1 1
min mink k

i i
i N i N

Q q q
   

   . 

Hence, from Eqs. (40) – (42), we obtain:  

 

1

, 2
1

1 1

1 1

min (4 3 )

N

i j

j j
j N

p
S h Q




  

 



 

    (43) 

From Eqs. (32), (37), (38) and (43), we get: 

 

 6 ( ) (5) ( 1) (6) ( 1) * 4

2

1
3 ( ) ( ) ( )

240 (4 3 )

k k k

i i iE h p x y y C h
h Q

   


 
 

 

Where,  * ( ) (5) ( 1) (6) ( 1)1
3 ( ) ( ) ( )

240 (4 3 )

k k k

i i iC p x y y
Q

  


 
 

, which is 

independent on mesh size  . 

Hence, the method in Eq. (28) is fourth-order convergent for  

1 10
, , 2

12 12
      and 

1

20
  . 

Theorem: The method given by Eq. (28) for solving the boundary value problem of 

Eqs. (4) and (5) for sufficiently small h gives a fourth order convergent solution. 
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RESULT AND DISCUSSION 

In order to test the validity of the proposed method and to demonstrate its convergence 

computationally, we have considered five model examples of nonlinear second order two-point 

boundary value problems with exact solutions. The maximum absolute errors at the nodal points are 

given by, 

1 1
max | ( ) |i i
i N

E y x y
   
  Where ( ) andi iy x y

 
are exact solution and numerical 

solution respectively, at the nodal point ix .  
 

The numerical results are tabulated in Tables (1) - (4) and depicted in Figures (1) - (5). The 

computed solutions are compared with the exact solutions at nodal points and compared with the 

methods in (Saeed and Rehman, 2014; Perfilieva et al., 2017; Pandey, 2018). 
 

Remark 2: All numerical results of Examples 1 - 5 are solved for the second iteration of quasi-

linearization method.  
 

Example 1: Consider the nonlinear second order differential equation:  
3( ) ( ) ( ) ( ) ( )y x y x y x y x f x    

    
(44) 

subject to the boundary conditions  0 0, (1) 0y y  , where  

2 3 4 5 6 9 12 15( ) 2 2 20 5 3 3f x x x x x x x x x x           

The analytical solution of this problem is 2 5( )y x x x  , (Saeed and Rehman, 2014). 

Applying the quasi-linearization technique to Eq. (44), we get: 

 ( 1) ( 1) ( ) 2 ( 1) ( ) 3( ) ( ) 1 3( ( )) ( ) ( ) 2( ( ))k k k k ky x y x y x y x f x y x         

with the boundary conditions  ( 1) ( 1)0 0, (1) 0k ky y   . 

Table 1. Pointwise absolute errors of Example 1 with different values of mesh  

               size h. 

 

  

Saeed and Rehman, (2014) Present Method 

               

0.1 4.2051152889𝑒 − 05 1.0271e-05 5.7289e-07 5.3917e-08 

0.2 8.1722744304𝑒 − 05 1.7961e-05 9.9183e-07 8.3736e-08 

0.3 1.1640750572𝑒 − 04 2.3165e-05 1.2636e-06 9.1560e-08 

0.4 1.4175454098𝑒 − 04 2.5988e-05 1.3979e-06 8.1994e-08 

0.5 1.5166050983𝑒 − 04 2.6547e-05 1.4084e-06 6.3216e-08 

0.6 1.3826276219𝑒 − 04 2.4965e-05 1.3117e-06 4.5973e-08 

0.7 9.1944320423𝑒 − 05 2.1372e-05 1.1220e-06 3.8417e-08 

0.8 1.3602317094𝑒 − 06 1.5908e-05 8.4401e-07 3.7912e-08 

0.9 1.4651915492𝑒 − 04 8.7281e-06 4.7154e-07 2.9710e-08 

E


 
-- 2.6547e-05 1.4176e-06 9.1560e-08 
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Fig. 1. Numerical solution versus exact solution for Example 1 when     . 

 

Example 2: Consider the nonlinear second order differential equation:  

 
31

( ) 1
2

y x y x   

     

(45) 

subject to the boundary conditions   11 , (1) 0
2 6

y y   . 

The analytical solution of this problem is
2

( ) 1
2

y x x
x

  


, (Pandey, 2018). 

Applying the quasi-linearization technique to Eq. (45), we get: 

 

   

2
( 1) ( ) ( 1)

3 2
( ) ( ) ( )

3
( ) 1 ( ) ( )

2

1 3
1 ( ) 1 ( ) ( )

2 2

k k k

k k k

y x x y x y x

x y x x y x y x

    

       

with the boundary conditions   ( 1) ( 1)1 1 , (1) 0
2 6

k ky y    . 

Table  2. Point wise absolute errors of Example 2 with different values of  

                 mesh size h. 

 

  

Present Method 

                  

0.5625 - 2.1021e-07 1.2401e-08 1.8137e-11 

0.625 6.2310e-06 3.9454e-07 2.3224e-08 9.1213e-11 

0.6875 - 5.4528e-07 3.2102e-08 1.2342e-10 

0.75 1.0258e-05 6.5020e-07 3.8425e-08 3.4894e-12 

0.8125 - 6.8985e-07 4.1077e-08 3.2565e-10 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

y
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0.875 9.9676e-06 6.3319e-07 3.8082e-08 6.9484e-10 

0.9375 - 4.3031e-07 2.6150e-08 7.5380e-10 

E


 
1.0258e-05 6.8985e-07 4.1077e-08 7.9395e-10 

E


, Pandey, (2018) 
0.7207642e-03 0.1922799e-03 0.9181426e-04 0.8538120e-04 

 
Fig. 2. Numerical solution versus exact solution for Example 2 when     . 

 

Example 3: Consider the nonlinear second order differential equation:  

( ) 2 ( ) ( )y x y x y x 
     

(46) 

subject to the boundary conditions     0 0, / 4 1y y  ,  

The analytical solution of this problem is ( ) tany x x , (Perfilieva et al., 2017). 

Applying the quasilinearization technique to Eq. (46), we get: 
( 1) ( ) ( 1) ( ) ( 1) ( ) ( )( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )k k k k k k ky x y x y x y x y x y x y x          

with the boundary conditions     ( 1) ( 1)0 0, / 4 1k ky y   . 

Table 3. Pointwise absolute errors of Example 3 with different values of mesh size h.  

                 

     1.3208e-08 1.2160e-08 5.9318e-09 

     1.3452e-08  1.1378e-08 9.4852e-10 

        2.4125e-08 5.9883e-09 2.9370e-09 

     5.4773e-08 3.1343e-08 2.7401e-08 

    7.7772e-08 4.9909e-08 4.5221e-08 

        8.3113e-08 5.2215e-08 4.7016e-08 

        7.3376e-08 4.1704e-08 3.6376e-08 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

x

y
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    5.8112e-08 2.9350e-08 2.4512e-08 

        3.7901e-08 1.8190e-08 1.4875e-08 

 
Fig. 3. Numerical solution versus exact solution for Example 3 when     . 

 

Example 4: Consider the nonlinear second order differential equation:  
2 2 4( ) ( ) 2 cos(2 ) sin ( )y x y x x x     

   
(47) 

subject to the boundary conditions     0 0, 1 0y y  ,  

The analytical solution of his problem is 2( ) sin ( )y x x  , (Perfilieva et al., 2017). 

Applying the quasilinearization technique to Eq. (47), we get: 
( 1) ( ) ( 1) ( ) 2 2 4( ) 2 ( ) ( ) ( ( )) 2 cos(2 ) sin ( )k k k ky x y x y x y x x x          

with boundary conditions   ( 1) ( 1)0 0, (1) 0k ky y   . 

Table 4. Pointwise absolute errors of Example 4 with different values of mesh size h. 

                        

0.1 1.0437e-04 1.0238e-04 1.0189e-04 1.0189e-04 

0.2 2.1128e-04 2.0223e-04 2.0003e-04 2.0001e-04 

0.3 3.0794e-04 2.8982e-04 2.8541e-04 2.8537e-04 

0.4 3.7685e-04 3.5133e-04 3.4511e-04 3.4507e-04 

0.5 4.0203e-04 3.7367e-04 3.6677e-04 3.6672e-04 

0.6 3.7685e-04 3.5133e-04 3.4511e-04 3.4507e-04 

0.7 3.0794e-04 2.8982e-04 2.8541e-04 2.8537e-04 

0.8 2.1128e-04 2.0223e-04 2.0003e-04 2.0001e-04 

0.9 1.0437e-04 1.0238e-04 1.0189e-04 1.0189e-04 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3
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1
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Fig. 4. Numerical solution versus exact solution for Example 4 when     . 

Example 5: Consider the nonlinear second order differential equation:  

2
( ) ( ) ( )y x y x y x

x
  

     

(48) 

subject to the boundary conditions     1 21 , 2
2 3

y y  ,  

The analytical solution of this problem is
1

( ) 1
1

y x
x

 


, (Perfilieva et al., 2017). 

Applying the quasilinearization technique to Eq. (48), we get: 

( 1) ( ) ( 1) ( ) ( 1) ( ) ( )2 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k ky x y x y x y x y x y x y x

x x x

         

with boundary conditions   ( 1) ( 1)1 21 , (2)
2 3

k ky y   . 

 

Table 5. Pointwise absolute errors of Example 5 with different values of mesh  

                size h. 

                        

1.1 4.0443e-06 4.0441e-06 4.0440e-06 4.0440e-06 

1.2 6.2073e-06 6.2069e-06 6.2068e-06 6.2068e-06 

1.3 6.1187e-06 6.1183e-06 6.1182e-06 6.1182e-06 

1.4 4.2301e-06 4.2297e-06 4.2296e-06 4.2296e-06 

1.5 1.4333e-06 1.4330e-06 1.4329e-06 1.4329e-06 

1.6 1.2707e-06 1.2709e-06 1.2710e-06 1.2710e-06 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

y
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1.7 3.0302e-06 3.0304e-06 3.0304e-06 3.0304e-06 

1.8 3.3338e-06 3.3339e-06 3.3339e-06 3.3339e-06 

1.9 2.1458e-06 2.1458e-06 2.1459e-06 2.1459e-06 

 
Fig. 5. Numerical solution versus exact solution for Example 5 when     . 

 

Table 6. Maximum absolute errors of Examples (Eg.) 3 – 5 with different values of mesh size h. 
 

Egs N                        

 

Eg. 3 

Present Method 8.3113e-08 5.3313e-08 4.6024e-08 4.5968e-08 

Perfilieva et al., 

(2017)
 

0.0028 - - - 

 

Eg. 4
 

Present Method 4.0203e-04 3.7367e-04 3.6677e-04 3.6672e-04 

Perfilieva et al., 

(2017)
 

0.0482 - - - 

 

Eg. 5
 

Present Method 6.4308e-06 6.4183e-06 6.4304e-06 6.4331e-06 

Perfilieva et al., 

(2017) 
9.995e-05 - - - 

CONCLUSION  

In this paper, the non-polynomial spline method is developed to find the approximate solution of 

nonlinear second order two-point boundary value problems. The technique of quasi-linearization is 

applied to linearize the nonlinearity of the problems. The convergence analysis of the method is 

established and it is shown that the present method is of fourth order convergent. To validate the 

applicability of the proposed method five nonlinear differential problems are considered for different 

values of mesh size   at the second iteration. The present method gives more accurate results than 

some methods reported in the document (Tables 1, 2 and 6). Moreover, the absolute errors (i.e., 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.5
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0.58
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0.64

0.66

0.68

x

y
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pointwise and maximum) decreases rapidly as N  increases, which in turn shows the convergence 

of the computed solution. Figures (1) - (5) also depicts that the present method approximates the 

exact solution very well.   

In a concise manner, the present method is simple to apply, convergent and more accurate for solving 

nonlinear second order two-point boundary value problems. 
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