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ABSTRACT

A non-polynomial spline method is formulated for solving nonlinear two-point
boundary value problems. The theoretical convergence of the method is investigated
and well established. To demonstrate the applicability of the method, some model
problems are considered and solved for different values of the mesh size h. Moreover,
the accuracy of the method also shown by the means of numerical experimentation and
it is observed that the proposed method is more accurate than some methods reported
in the literature.
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INTRODUCTION

The subject of nonlinear differential equations is
well established as part of mathematics and its
systematic development goes back to the early
days of the development of calculus (Abd-
Elhameed et al., 2015). Many problems in
science and technology are formulated in linear
or nonlinear boundary value problems of the
second order ordinary differential equations
with various types of boundary conditions as in
heat transfer, deformation of beams, heat power
transmission, boundary layer theory, and
deflection in cables and the modeling of
chemical reaction. Numerical simulation in
engineering, science and in applied mathematics
has become a powerful tool to model the
physical ~ phenomena, particularly  when
analytical solutions are not available or very
difficult to obtain analytical solution, (Rahman
et al., 2012; Zanariah et al., 2013; Osama et al.,
2015; Zurni and Oluwaseun, 2016a; Zurni and
Oluwaseun, 2016b).

The general form of second order nonlinear
two-point boundary value problems are given in
the form of:

2
d7y _ (Xyﬂj a<x<b
dx? dx
@
subject to the boundary conditions:
y(@) =4 and y(b) = ¢,
o)

where, a, b, ¢ and ¢, are given constants
with the unknown function y(x) . Most of the

time, the boundary value problem of Eq. (1)
with one of the boundary conditions of Eq. (2)

can be re-written as the governing equation of:
d? d
S 00 L+ g)F () = g (x)
dx dx

®

Where, p(x), q(x)and g(x)are smoothly
continuous function for every x €[a, b].

Here, Eq. (3) may be linear or nonlinear
boundary value problems depending on the
function F(y). That is, if the function F(y)is

linear function of Y , then Eg. (3) is linear;

otherwise it is nonlinear. Similar to the case of
initial value problems, boundary value problems
sometimes have more than one solution or the
solution may not exist. In recent years, many
numerical methods have been developed by
different scholars for solving linear and
nonlinear second order ordinary differential
equations with boundary value problems. For
instance: Galerkin method with Hermite
polynomials by Rahman et al. (2012); block
method by Zanariah et al. (2013); new fourth
order quartic spline method by Osama et al.
(2015); shooting method by Mizanur et al.
(2015); Galerkin residual

method using Legendre polynomials by Hossain
et al. (2015); five order block method and two-
step block method with starting and non-starting
values by Zurni and Oluwaseun (2016); and
quintic spline method by Osama et al. (2016).

Modeling of the real life phenomena in most
cases leads to nonlinear second order ordinary
differential equations that may be difficult to
solve analytically. Hence, several numerical
methods had been developed to solve the
nonlinear second order two-point boundary
value problems, due to its importance in
different areas of the real life phenomena.
However, the development of appropriate
methods for solving these problems is not
exhausted and still demanding for more
accuracy and simplicity. Therefore, it is very
important to formulate an alternative numerical
method that is simple, convergent and more
accurate for solving the nonlinear second order
two-point boundary value problems.
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MATERIAL AND METHOD

Formulation of the Method

Consider the nonlinear second order two-point boundary value problems of the form:

y'() =T (X y(X),y(x), asx<b 4
subject to the boundary conditions
y@=d¢, yb)=4¢. ®)

To treat the problem, we first apply the quasi-linearization technique (Bellman and
Kalaba, 1965) and linearize Eq. (4). By choosing a reasonable initial approximation for
the function y(x) in f(x,v.y) call it as y®(x) and expand f(xy,y) around the

function y© (x) , we obtain:

r r 6'
f (X, y“),y (1))_— f(x, y“’), y (0)) +(y(1) - yw))[—J
(x,y?,y®)

oy
’ ! af
+(y(1)_y(o))[_J T
8y (x,y(o),y’(o))

In general, we can write for k =0,1,2,--- (K is iteration index),

f (X, y(k+1) , y’(k+1) ) = f(x, y(k) ] yr(k)) +(y(k+1) _ y(k) )(ﬂj
oy ORCRYZON

+(y!(k+1) _ yl(k))tij ¥
ay’ (x,y(k),y’(k))
Thus, after the linearization process Egs. (4) and (5) becomes:
(k) (k)
yn (k+1)(X)_£af - \Jy! (k+1)(X)_[af Jy(kJrl)
oy oy

—f _y(k{af(k) j_y,(k)[ﬁ(t)],
oy oy

@)
for k=0,1,2,---, where

f(k) — f(X, y(k),y’(k)), a(k) :[ﬂj , af_(k):[ﬁ]
ay 5y (xy ™,y 5’y' 8y’ (x,y®),y )y

With

(6)

YO (a) = gt and YOI (b) = g, ©
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This implies that the non-linear differential equation in Egs. (4) and (5) becomes linear
in y®* . Solving sequence of linear differential equation given by Egs. (7) and (8), we

can get the approximate solution to the original problem in Egs. (4) and (5).

Now, in order to develop the non-polynomial spline approximation for the second-
order type boundary value problem in Egs. (7) and (8), the interval [a,b] is divided
into N equal sub-intervals. For this, we introduce the set of grid points
X =%, +ih, 1=0,12,...,N, so that,

b-a
a=X, <X < - <Xy, <X, =b,where hzT.

Let y®*™(x) be the exact solution of the Egs. (4) and (5) and y** be an
approximation to y®**? (x,) , obtained by the segment S, (x) of the spline function
passing through the points (x,, y*™®) and (x_,, y%™) from Egs. (7) and (8) at

(k +1)™ iteration. For each i"™ segment, let us consider the non-polynomial spline
function S, (x) in subinterval [%, %], i=0,12,---,N —1of the form:

S, (X)=4a,sinw(x—x)+b, cosw(x—x )+
c (ew(x—xn _e—w(x—xn) ‘d (evv(xfxi) +e—w<x—xi))

)

Where, a,b, ¢, and d, are constants to be determined and W # O is a parameter

which is used to raise the accuracy of the method.
To determine the unknown coefficient in Eq. (9), let us denote:

SA(Xi): yi(k+l)‘ SA(XH—l): yi(ffl) ’ SZ(Xi): M; SZ(XHl): M., (10)

Differentiating Eq. (9) successively, we get:
Sy (X) =awcosw(x—x;)—bwsinw(x—x) +

(1)
CiW(ew(x—xi) 4 e—w(x—xi))+ diW(ew(x—xi) _e—w(x—xi))
Sx(x)=—aw’sinw(x—x;) —bw? cosw(x — x,) + 12)
oW (ew(xw _efvv(x—x.)) +dw? (ew(H,) 4o ) )
Using relations in Egs. (10) and (12), we have:
S"(x ) =M, =—-bw* +2d,w’
which in turn resulted in
M.
2d; =b +— (13)
W

Again, using the relation in Eq. (10), Eq. (13) into Eq. (9) at the point Xi , We obtain:
S(Xi): yi(kﬂ) =b +2d,

and it gives
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W2 y§k+1) M.
bh=—2__ 1 14
' 2w? a4
Substituting Eq. (14) into Eq. (13), we get:
M. +W2y»(k+1)
d=—"— 15
' 4w? (19

Using the relation in Eq. (10), Eq. (14) in Eq. (12) at the point x,,, and letting wh=6,
we have:
(k+1)

- 2 A
w

- ]cos(9+ci (e"—e”)+d,(e"+e*)  (6)

Using the relation in Eq. (10), Eq. (14) in Eq. (9) at the point x,,,, we have:

W2 yi(k+l) M

(k+1) _ o of
Vi, =asing+
i+1 i 2W2

o (¢ -e g 670 )

Subtracting Eq. (16) from Eq. (17), we obtain:

Wy —M,, + (M, Wy ) cos o

_ i+1 i+1 18

% 2w?sin@ a8
Adding Eqg. (16) and (17), we obtain:

W2 (k1) M.

Wha T8 _pe, (¢/—e)+2d, (e’ +e ) (19)

w
Substituting Eq. (15) into Eq. (19), we get:
2(WPys M) ~(M, +wey ) (e e )
4w’ (e’ —e )

Using the continuity condition of the first derivative at x; thatiss  (x)=S.(x).
we have,
a,cos0-b sinf+c (e"+e’)+d w(e’ —¢’)=a +2 1)

Reducing indices of Egs. (14), (15), (18) and (20) by one and substituting into Eq. (21)
and simplifying, we obtain:
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— o0 -0
S S VL (AL Y

2sing  (e” —e™) singd (" —e™)

-1 1 —h? h?

+ o (a0 o0 yl(ljlﬂ) 2 i R a— Mi,
2sing (" —e™) 20°sing  O0°(e" —e™)
h®>cos® h?*(e’ +e™?)

2 i T p2a0 o0 M;
O°sind  0°(e” —e’)

—h? h?
+ 2 a: + 2 (A0 -6 IVli+1
20°sing  0°(e" —e™")

which implies
Y& — pyf P + ylY =n? (aM,, + BM; +aM, ;) (22)
where,
_e’—e’-2sin0
- 0*(2sin0+e’—e’)’
—2{e‘9 (cos 6 —sin 49)—e“’(sim9+cos€)}
92(25in9+e9 —e‘g) ’
B 2{e’(cos @ +sin @) + e~ (sin @ —cos O)}

2sin@+e? —e™*

As0 =0, (a,p,p)—> (%% 2) and then spline relation defined in Eg. (22)
reduces to a polynomial cubic spline relation in Millar et al. (1996).
Now rewriting Eg. (7) and evaluating at the nodal points Xi , we have:

n(k+l) _

Y pi(k) yi, (k+1) + qi(k) yi(k+1) + ri(k) (23)

where

pf“=af‘—(k,), qf“=afi—(k) and " = £09 —y® (af(k] y, v (af(k,)j-
oy oy oy oy

Using spline’s second derivatives in Eq. (10) at (k + 1)t" iteration, we have:

Mj(k+1) _ pgk)y;(ku) +q§k)yfk+1) +rJ(k) for J =i _l i' j+1 (24)

k+1
Using the following approximations for the first derivative of yi( ) , (Bawa, 2005):

rkD) o ylfﬂ) +4y(k+l) 3y(k+l)
yl -1 2h 1 (25)

(kD) o yl(tfl) 4y(k+1)+y(k+1) 26
y|+1 - 2h 1 ( )
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e o | 1+22h%gl +7h3pf + pi) | e .
e { PPt P Ly or(pff 4 p)y
1+27h’q®) —zh(pf) +3p™) | 4 © _ 0 “
- °n Vi +oh(ry —r)

where ¢ is a parameter used for increasing the accuracy of the computed solution.
Remark 1: If p =2 and 7z =0, the present method reduces to the method of Aziz and

Khan (2002).
Substituting Egs. (24) - (27) into Eqg. (22) and rearranging, we obtain the three-term
recurrence relation of the form:

ECYEY — ROy 4 G0y = H©, 1=12,-N -1 (28)
Where,

1
E = 1+§ahpi‘_k£ —ah’qly + 2 php® + peh’pRah

1 1
=5 Behp (Pl +3p(Y ) -2 il
R = p+2ahp() ~2pehp (p(2) + pf )+ hq - 2ahpf]
1 1 1
G =1+~ ahp - php( — prh’pMall} -~ fzh®p (3p11 + pfY)

k 2 (k
{ )_ah qi(+1)

i+l

—gahp
H =1 {(cr= Behp® )12 + 1+ (a+ pehp® )]
Using discrete imbedding algorithm, the tri-diagonal system in Eq (28) in order to
obtain the approximations y&+® ydeD L oyab of the solution y(x) at
Xy Xon ooty Xyge

Convergence Analysis

In this section, we investigate the convergence analysis of the proposed method. For
th|S, Iet Y (k+1) _ y(k+1) (Xi), Y(k+1) :yi(k+l), D= di! T :til E= ei —-Y (k+1) _Y(k+l)
fori =1,2,---,N —1, where Y& y&D T and E are exact solution,
approximate solution, local truncation error and discretization error respectively at

(k + 1) iteration.
Putting the tri-diagonal system in Eq. (28) in matrix vector form:

(A+ B+ hzc)YM =D (29)

where
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[-p 1 0 0]
1 -p 1 0
0o 1 - 1
A=| . P . .
1 —(p 1
L 0 1 -p]
M, K, 0 0 |
L, M, K, 0
M K
C= . : ..3 : and
I‘N—2 MN—Z KN—2
L 0 LN—l Ile—l_
A hw, —h%z, 0
hu, +h*X, hv, hw, —h’z,
. 0 hU, +h*X, hv, hw, —h°z,
hU,_, +h3XN_2 hv,_,
0 hU,_, +h*X,

are of order (N — 1), where
1
U, =2 (3ep+ pp( ~ (),

1
L =-aq® -2 prp( (S +3p19),

L =-aqf—2 prpl 30+ p). X, =prpla,

2

M, =287p® (p% + p)) - Ao,

Z, = prpPal)

and the (N — 1)column vector D = (d,) is given by:

HY -EMg, i=1
d =<HY | 2<i<N-2
HEL -G, i=N-1

Now, considering the above system with exact solution

Y_(k+1) _ |:y(k+1)(xl)’ y(k+1)(X2), . y(k+1) (XNfl)]T we have,

(A+B+h’C)Y*? =T (h)+D

(30)

hw, _,

- h32N—2

hv,

1
Vi=2a(pfd - P, W= (ap-pp ~3ap()

where T(h) =[t1(h), t,(h), -, tN_l(h)]T is the local truncation error associated

with the scheme in Eq. (28) which is given by,

49



Non-Polynomial Spline Method Duressa et al. 50
t,(h)=—(2-p)y; + Qo+ f-Dh?y" “I(x)

h { o- ﬂ[ +2r]]p(k)(x.)y““)(x.)+[a—112]y“)<“>(x.)} (31)
- _ (k) (5) (k+1) 1 (6) (k+1)
h {[ /3(3 120]] (x)yO D) + (12 %Oj (5)}

for x_, <& <X,

Thus, for different values of «, £, p and = in the scheme of Eq. (28), the following
different orders of the method can be obtained.

i. For any choice of arbitrary « and g with 2a+ =1, p=2 and for any
value of 7 , the scheme of Eq. (28) gives the second-order method.

1 10 1
ii. For choice a=—, f=—, =2 and 7 =——, the scheme of Eq. (28
2 ? 20 0 (8)
gives the fourth-order method, and Eq. (31) becomes:
(k
X,
um=w{ R “W%m} @)

Subtracting Eq. (29) from Eq. (30), we get:
PE =T (h) (33)

- . T
where P=A+B+h’C and E=Y®P -y&D =[91,ez."',eNfl] .
Let S, bethe i™ row sum of the matrix p , then we have:
S =1-p+ h(a Q- pp* -3a (k))

1 P 2 p|+1 p p

=1 (34)
e 2B 3 - a0

S, =2-p—h*(aq® + g +aq))+O(h*), i=2,3,---,N-2  (35)

Sy, =1- p+h(3ap,(+k1)+,3pi(k) ap.(kl))
i=N-1 (36)

["’ P (3p + p)— g - aqf_kzj+0(h3)

For sufficiently smallh, the matrix P is monotone, (Young, 1971). It follows that p
exists and its elements are nonnegative.

Hence, from Eq. (33), we have:

E=P™T(h) and [E[<|P?|[T(M| (37)
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Let p,, bethe (i, j)™ element of the matrix P and define,

I<isN-1

N-1
"Pfl":li‘ilaN’fl;ﬁ‘*j and [T (h)| = max [t,(h)| (38)

Since B, ; =0, from the properties of monotone and non-negative matrices, we have:

N-1

>'p,,S, =1 for i=12--,N-1 (39)

j=1
Hence, from Egs. (34) — (36), we have:
1

1
PaSe< 1 forj=1 4
Pi S S Qe+ )
Pinag S 1 < forj=N-1 @
: Sya  h’Qa+p)
N-2 1 1
Furth S ; < ' *
urther, J;pj Zmllpzsj hZQ(Za—i-IB) (42)
<j<N-

= i (k)| = i
where, Q Eimq' o

4",

Hence, from Egs. (40) — (42), we obtain:
N-1 _ l l
2P S — <
=i min S;  h"Q(4a +3p)

1<j<N-1

(43)
From Eqgs. (32), (37), (38) and (43), we get:

1

€= 240n°Q(4a +3)

h*{3]p™ (x)y® 2 (&) + [y ()]} =Ch
B 1
© 240Q(4a +3p)

independent on mesh size h.
Hence, the method in Eq. (28) is fourth-order convergent for

Where, C” {3‘ p®(x)y® (&)

+ ‘ y(6) (k+1) (é;l)

b, which s

1 10 1
=—, =, :2 d =
a=gy Py pe2and =y

Theorem: The method given by Eq. (28) for solving the boundary value problem of
Eqgs. (4) and (5) for sufficiently small h gives a fourth order convergent solution.
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RESULT AND DISCUSSION

In order to test the validity of the proposed method and to demonstrate its convergence
computationally, we have considered five model examples of nonlinear second order two-point
boundary value problems with exact solutions. The maximum absolute errors at the nodal points are
given by,

|E|. = max |y(x)—y;|Where y(x)andy, are exact solution and numerical
© " 1<isN-1

solution respectively, at the nodal point ;.

The numerical results are tabulated in Tables (1) - (4) and depicted in Figures (1) - (5). The
computed solutions are compared with the exact solutions at nodal points and compared with the
methods in (Saeed and Rehman, 2014; Perfilieva et al., 2017; Pandey, 2018).

Remark 2: All numerical results of Examples 1 - 5 are solved for the second iteration of quasi-
linearization method.

Example 1: Consider the nonlinear second order differential equation:

YO+ Y () +y () +y(x) = f(X) (44)
subject to the boundary conditions y(0) =0, y(1) =0, where

f(X) =2+2x+x? —20x° —=5x* —x® +x® —=3x° +3x2 —x*®
The analytical solution of this problem is y(x) = x* —x°, (Saeed and Rehman, 2014).
Applying the quasi-linearization technique to Eq. (44), we get:

Y D () +y D )+ (L+3(y% ()7 )y (x) = £ (x)+ 20y ()’
with the boundary conditions y* (0) =0, y** (1) =0.

Table 1. Pointwise absolute errors of Example 1 with different values of mesh

size h.
Saeed and Rehman, (2014) Present Method
x N =10 N =20 N =30
0.1 4.2051152889%¢ — 05 1.0271e-05 5.7289e-07 5.3917e-08
0.2 8.1722744304¢ — 05 1.7961e-05 9.9183e-07 8.3736e-08
0.3 1.1640750572¢ — 04 2.3165e-05 1.2636e-06 9.1560e-08
0.4 1.4175454098e — 04 2.5988e-05 1.3979e-06 8.1994e-08
0.5 1.5166050983e — 04 2.6547e-05 1.4084e-06 6.3216e-08
0.6 1.3826276219¢ — 04 2.4965e-05 1.3117e-06 4.5973e-08
0.7 9.1944320423¢ - 05 2.1372e-05 1.1220e-06 3.8417e-08
0.8 1.3602317094e — 06 1.5908e-05 8.4401e-07 3.7912e-08
0.9 1.4651915492¢ — 04 8.7281e-06 4.7154e-07 2.9710e-08
||E|| - 2.6547e-05 1.4176e-06 9.1560e-08
00
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0.35 T T T T T T T T
4+ Numerical Solution
P N
----------- Exact Solution *“' &
0.3 i
* "*
0.25]- & ,
€ *
0.2} [
& y
> 3
015} & .
*
& H
0.1 N
*
0.05 .
¥ 3
0 -Q* r r r r r r r r

Fig. 1. Numerical solution versus exact solution for Example 1 when N = 20.

Example 2: Consider the nonlinear second order differential equation:

1
y'(x) = E(1+ y+ x)3 (45)
subject to the boundary conditions y(%) = —%, y@)=0.

2
The analytical solution of this problem is y(X) = P X—1, (Pandey, 2018).
—X
Applying the quasi-linearization technique to Eq. (45), we get:
Y00 -2 (1 x4y (0) ¥ (0

3

= %(1+ X+ y(k)(x)) g(1+ X+ y® (x))2 y® (x)

with the boundary conditions y®**% (%) = —%, y& (M =0.

Table 2. Point wise absolute errors of Example 2 with different values of

mesh size h.
Present Method
X N=4 N=28 N =16 N =32

0.5625 - 2.1021e-07 1.2401e-08 1.8137e-11
0.625 6.2310e-06 3.9454e-07 2.3224e-08 9.1213e-11
0.6875 - 5.4528e-07 3.2102e-08 1.2342¢-10
0.75 1.0258e-05 6.5020e-07 3.8425e-08 3.4894e-12
0.8125 - 6.8985e-07 4.1077e-08 3.2565e-10
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0.875 9.9676e-06 6.3319e-07 3.8082e-08 6.9484e-10

0.9375 - 4.3031e-07 2.6150e-08 7.5380e-10

” E” 1.0258e-05 6.8985e-07 4.1077e-08 7.9395e-10
0

0.7207642e-03 0.1922799¢-03  0.9181426e-04  0.8538120e-04
"E"m, Pandey, (2018) ¢ ¢ ¢ ¢

O T T T T T T T T
4+ Numerical Solution
-0.02 [ reeereeees Exact Solution S

0.04 |- S
-0.06 |- .

-0.08

T
1

0.1} * 4
-0.12 - *: -
-0.14}- - i

-0.16

I
*

Tt E

.0.18 r r r r r r r r r
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

X

Fig. 2. Numerical solution versus exact solution for Example 2 when N = 20.

Example 3: Consider the nonlinear second order differential equation:

y'(x) =2y(x)y'(x) (46)
subject to the boundary conditions y(0)=0, y(z/4)=1,
The analytical solution of this problem is y(x) = tan x, (Perfilieva et al., 2017).
Applying the quasilinearization technique to Eq. (46), we get:

y" P 0 =2y )y P () —2y"© 0y P (x) = —2y® () y' € (%)
with the boundary conditions y®** (0)=0, y*™® (z/4)=1.

Table 3. Pointwise absolute errors of Example 3 with different values of mesh size h.

X N =20 N =30 N =40
/40 1.3208e-08 1.2160e-08 5.9318e-09
m/20 1.3452¢-08 1.1378e-08 9.4852e-10

(3m)/40 2.4125e-08 5.9883e-09 2.9370e-09
m/10 5.4773e-08 3.1343e-08 2.7401e-08
/8 7.7772e-08 4.9909e-08 4.5221e-08
(3m)/20 8.3113e-08 5.2215e-08 4.7016e-08

(7m)/40 7.3376e-08 4.1704e-08 3.6376e-08
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/5 5.8112e-08 2.9350e-08 2.4512e-08
(9m)/40 3.7901e-08 1.8190e-08 1.4875e-08
l T T T T T T T .2%
+ Numerical Solution s
0.9 weeveeees Exact Solution R
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Fig. 3. Numerical solution versus exact solution for Example 3 when N = 20.

Example 4: Consider the nonlinear second order differential equation:
y"(X) = Yy (X) + 2722 cos(27rX) —sin® (7 X)
subject to the boundary conditions y(0)=0, y(1)=0,

(47)

The analytical solution of his problem is y(x) = sin®(zx) , (Perfilieva et al., 2017).

Applying the quasilinearization technique to Eq. (47), we get:
y" €D () = 2y O (x)y “D (x) = — (Y™ (X))? + 277 cos(27X) —sin® (zX)
with boundary conditions y®* (0)=0, y**(1)=0.

Table 4. Pointwise absolute errors of Example 4 with different values of mesh size h.

x N =20 N =30 N =100 N =200
0.1 1.0437e-04 1.0238e-04 1.0189e-04 1.0189¢-04
0.2 2.1128e-04 2.0223e-04 2.0003e-04 2.0001e-04
0.3 3.0794e-04 2.8982e-04 2.8541e-04 2.8537e-04
0.4 3.7685e-04 3.5133e-04 3.4511e-04 3.4507e-04
0.5 4.0203e-04 3.7367e-04 3.6677e-04 3.6672e-04
0.6 3.7685e-04 3.5133e-04 3.4511e-04 3.4507e-04
0.7 3.0794e-04 2.8982e-04 2.8541e-04 2.8537e-04
0.8 2.1128e-04 2.0223e-04 2.0003e-04 2.0001e-04
0.9 1.0437e-04 1.0238e-04 1.0189e-04 1.0189e-04
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+  Numerical Solution
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Fig. 4. Numerical solution versus exact solution for Example 4 when N = 20.
Example 5: Consider the nonlinear second order differential equation:
, 2
y'() ==Yy () (48)
subject to the boundary conditions y(1) = }/ y(2)= % ,
. . , . 1 -
The analytical solution of this problem is y(X) = 1—1— , (Perfilieva et al., 2017).
+ X
Applying the quasilinearization technique to Eq. (48), we get:
”n 2 ’ +. 2 ’ +. 2 ’
y" D (x) + X y“ )y P (x) +2Y “C )y P (x) = X y“ 0y (%)
with boundary conditions  y** (1) = %, y*(2) = % .
Table 5. Pointwise absolute errors of Example 5 with different values of mesh
size h.

x N =20 N =30 N =100 N =200
1.1 4.0443e-06 4.0441e-06 4.0440e-06 4.0440e-06
1.2 6.2073e-06 6.2069e-06 6.2068e-06 6.2068e-06
13 6.1187e-06 6.1183e-06 6.1182e-06 6.1182e-06
1.4 4.2301e-06 4.2297e-06 4.2296e-06 4.2296e-06
15 1.4333e-06 1.4330e-06 1.4329¢-06 1.4329e-06
1.6 1.2707e-06 1.2709e-06 1.2710e-06 1.2710e-06
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1.7 3.0302e-06 3.0304e-06 3.0304e-06 3.0304e-06
1.8 3.3338e-06 3.3339e-06 3.3339%-06 3.3339e-06
1.9 2.1458e-06 2.1458e-06 2.1459¢-06 2.1459¢-06
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Fig. 5. Numerical solution versus exact solution for Example 5 when N = 20.

Table 6. Maximum absolute errors of Examples (Eg.) 3 — 5 with different values of mesh size h.

Egs N N =20 N =30 N =100 N =200
Present Method 8.3113e-08 5.3313e-08 4.6024e-08 4.5968e-08
Perfilieva et al.,

Eg. 3 (2017) 0.0028 - - -
Present Method 4.0203e-04 3.7367e-04 3.6677e-04 3.6672e-04

Eg. 4 Perfilieva et al., i i )

(2017) 0.0482

Present Method 6.4308e-06 6.4183e-06 6.4304e-06 6.4331e-06

Eg.5 Perfilieva et al., ) ) ) )

g (2017) 9.995e-05
CONCLUSION

In this paper, the non-polynomial spline method is developed to find the approximate solution of
nonlinear second order two-point boundary value problems. The technique of quasi-linearization is
applied to linearize the nonlinearity of the problems. The convergence analysis of the method is
established and it is shown that the present method is of fourth order convergent. To validate the
applicability of the proposed method five nonlinear differential problems are considered for different
values of mesh size h at the second iteration. The present method gives more accurate results than
some methods reported in the document (Tables 1, 2 and 6). Moreover, the absolute errors (i.e.,
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pointwise and maximum) decreases rapidly as N increases, which in turn shows the convergence
of the computed solution. Figures (1) - (5) also depicts that the present method approximates the

exact solution very well.

In a concise manner, the present method is simple to apply, convergent and more accurate for solving
nonlinear second order two-point boundary value problems.
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