ORIGINAL ARTICLES

Effects of Vermicompost and NPS Fertilizer rate on Yield and Yield Components of Highland Maize in Vertisol Ambo

Tolera Abera*, Tolcha Tufa, Buzayehu Tola and Haji Kumbi

1-4Natural Resources Management Research Process, Ambo Agricultural Research Center, Ethiopia Institute of Agricultural Research Institute (EIAR), P.O. Box 382, Ambo, West Showa, Oromia, Ethiopia *Correspondence email: thawwii2014@gmail.com

ABSTRACT

Integrated soil fertility management using organic and inorganic fertilizer is recognized as absolute soil fertility management aims to increase yield, a better option in improving agronomic efficiency, providing a more balanced supply of nutrients and saving cost of production. Considering importance integrated soil fertility management for crop production an experiment comprised of eleven sole and integrated nutrient management practices was conducted on smallholder farmers field around Ambo for highland maize in laid in a randomized block experimental design with three replications. Yield and yield components of highland maize variety (Wenchi) was significantly affected with sole and integrated use of vermicompost and NPS fertilizer rate. Significantly higher (6187 kg ha-1) was obtained with application of 92/69/30 kg NPS ha-1 followed by (5193 kg ha-1) with 50:50 vermicompost based on N equivalency and NPS fertilizer rate. Application of 92/69/30 kg NPS ha⁻¹ gave the highest net return of EB 32265 with highest marginal rate return of 713 % followed by net return of EB 27167 and marginal rate return of 295 % for highland maize production was obtained from application of 50:50 % recommended NPS with vermicompost based on N equivalency in Vertisols of Ambo. Therefore application of 92/69/30 kg NPS ha⁻¹ and 50:50 % recommended NPS with vermicompost based on N equivalency produced better grain yield and economical feasible and recommended for highland maize production in Vertisol of Ambo and similar agro-ecologies.

Keywords: Highland maize, integrated soil fertility management, NPS, variety, vermicompost

INTRODUCTION

Maize (*Zea mays* L.) an important crop which has a wider adaptability to varied agroecological conditions worldwide (Roychowdhury et al., 2017). Maize may be called as the 'king of cereals' as because of its high genetic yield potential in productivity when it is compared with other cereals (Umesha et al., 2014, Shah and Wani, 2017); most important cereal amongst the cereals due to its highest genetic yield potential (Roychowdhury et al., 2017); a queen of cereals due to its great importance in human and animal diet, very efficient utilizer of solar energy and has immense potential for higher yield (Yadav et al., 2017). It is the most widely cultivated cereal crop in terms of area coverage (16.08%) and production (25.81%, 6491540.292 tons) in Ethiopia (CSA, 2016). Currently, maize is the commonly crop by smallholder farmers in highland areas of western Ethiopia since commencement highland of maize improvement program in 1998 at Ambo. However, the estimated average yields of maize for smallholder farmers in Ethiopia are about 3.2 t ha-1 (CSA, 2016), which is much lower than its productivity in industrialized countries such as USA which is 8 to 9 tons ha-1 (FAO stat, 2015). This might be due to growing below optimum management practices (Tolera et al., 2017); abiotic stresses (Ahmad et al., 2014); both biotic stress (diseases, pests, and lack of suitable varieties) and abiotic stresses (low soil fertility and lack of capital to purchase farm inputs) (Bello et al., 2010: Veiga et al., 2012). Yield gaps is multi-facetted but nearly always contains poor soil fertility conditions or poor soil management practices as an important component (Kone et al., 2011; Tittonell et al., 2013). The severe decline of soil fertility in Ethiopia is due to inappropriate cropping practices including monocropping, unbalanced nutrient application, continuous cultivation, removal of crop residues from the fields and suboptimal of fertilizer application (Tolera, 2016). Farmers fail to attain the yield potential of the improved varieties due to the decline in soil fertility in areas where maize is the dominant crop it is mainly

mono-cropped (Mosisa *et al.*, 2011). Population growth and rising food demand continues to outpace productivity growth (Alobo, 2015; Badiane and Collins, 2016). Low inherent soil fertility and soil degradation through nutrient and organic matter depletion remain major constraints to food production and contribute to chronic poverty (Vanlauwe et al., 2015; Barrett and Bevis, 2015). Low and declining soil fertility has been recognized for a long time as a impediment to intensifying maior agriculture in sub-Saharan Africa (SSA) (Vanlauwe et al., 2018). It has been projected that global food production must increase by 70 % by 2050 to meet the ever-increasing demand caused by burgeoning human population, increasing incomes and consumption (Ahmad et al., 2014). Several factors are contributing to high plant performance under different environmental conditions; therefore, an effective and complementary use of all the available technological tools and resources is needed to meet the challenge (Ahmad et al., 2014). Inorganic fertilizer and integrated use of inorganic and organic fertilizer are among the major alternative soil fertility management technologies used for yield improvement maize.

Currently, the skyrocketed prices of synthetic fertilizer have made it difficult for smallholder farmers to use inorganic nitrogen fertilizer for crop production. Furthermore, majority of smallholder farmers cannot afford mineral fertilizers, and those using fertilizer hardly use the recommended rates (Mugwe et al., 2009). Moreover, the little fertilizer available when added to the soil is often utilized with poor efficiency (Vanlauwe et al., 2010). Fertilizer use, especially the inorganic one is generally low in Africa as most farmers are satisfied with the fertility state of their soil (Sekumade, 2017). Also, Kherallah et al. (2002) gave some potential reasons for low fertility use rates as: high fertilizer cost, prevalence of traditional crop varieties that are less responsive to fertilizer and low to invest in land-saving incentives technologies. Furthermore, the crop takes up only a small fraction of this fertilizer (roughly 5% to 50%) (Carranca, 2012), but not all the nitrogen applied, since N could be lost by volatilization, gaseous plant emission, surface soil runoff, leaching and denitrification (Raun and Johnson, 1999). Of the total input in the form of nitrogen- and phosphorus fertilizers, only 15-20% is actually embedded in the food that reaches the consumers' plates, implying very large nutrient losses to the environment (Sutton et al.,2013), while in Sub-Saharan Africa soil nutrient depletion (where extraction is higher than the input) is common (FAO, 2015). Although essential for the health, maintenance of soil organic amendments such as manure, compost or crop residues are in short supply, suffer from competition for usage and are not able to compensate fully for nutrient losses from cropland (Valbuena et al., 2014). Organic amendments are often not available on farm at the amounts required (Getachew and Tilahun, 2017). The use of locally available manure is also limited by its low quality and quantity (Bationo and Waswa, 2011; Murwira et al., 2002; Sanginga and Woomer, 2009). Thus, indeed need of integrated use of inorganic and organic fertilizer for maize production in the area.

Integrating use of organic and mineral fertilizers is the best alternative technology used for tackling soil fertility depletion and sustainably increasing crop vields (Getachew and Tilahun 2017; Getachew et al. 2014; Gete et al. 2010). Integrated use of NP and farm yard manure (FYM) gave higher yield than application of either NP or FYM alone for maize production (Wakene et al., 2004a). Application of FYM every three years at the rate of 16 t ha-1 supplemented by NP fertilizer annually at the rate of 20-46 Kg $N-P_2O_5$ ha-1 was recommended for sustainable OPV maize production around Bako area (Tolessa, 1999). Likewise, the application of 4 tons FYM ha-1 incorporated with 75/60 kg of N/P ha⁻¹ is economical and profitable combinations in boosting hybrid maize (BH-140) yield in west Hararghe zone, Eastern Ethiopia (Zelalem, 2014). Furthermore, integrated use of compost 5 t ha-1 with NP (Wakene et al., 2004b); fullrecommended doses of NP with five ton per hectare crop residue (Heluf et al., 1999); and biogas slurry with NP fertilizer (Tolera et al., 2005) produced significantly higher grain vield of maize and improved soil physicochemical properties. Integrated use of green manure improved fallow with low doses of inorganic fertilizer or FYM gave higher mean grain yield of maize (Wakene et al., 2007); application of Sesbania sesban's biomass with dry FYM above five t ha-1 gave comparable or greater mean maize yield to 69 kg N ha-1 from urea fertilizer (Tesfa et al., 2012). The combined use of organic and inorganic inputs saves about 50% of the cost of inorganic nitrogen fertilizer on its own (Vanlauwe et al., 2001; Akinola et al., 2009) Therefore, integrated use of different organic fertilizers sources with inorganic fertilizer had improved maize grain yield and soil physiochemical properties. Integrated use of soil management technologies had reduced considerable amount of inorganic fertilizers and saved costs invested for chemical fertilizers in maize production (Tolera, 2016). Hence, there is a need to apply both organic and inorganic fertilizers in a balanced way to get expected output (Zebider, 2011). Different combinations of inorganic and organic fertilizer sources were therefore evaluated for soil fertility management in the different regions to suggest a viable and better alternative technology to current soil fertility management in maize production. However, no findings and researches studied the effects of integrated inorganic and organic fertilizer on yield of highland maize varieties in Ambo area. Therefore, optimum rate of integrated inorganic and organic fertilizer is the most important input production improving the for and productivity of maize. The objective is to determine effects of vermicompost and NPS fertilizer rate on yield and yield components of highland maize in Vertisol Ambo.

MATERIALS AND METHODS

Description of the study area

The experiment was conducted on smallholder farmers field around Ambo for three years from 2014 to 2016 cropping season. Geographically, it is located at 8°57"N latitude, 38°07"E longitude and at an

altitude of 2185 meters above sea level. It receives a mean annual rainfall of 1100 mm. The minimum, maximum and mean temperatures of the area are 11, 26 and 18.5°C, respectively. The soil type is Vertisol consisting of 67 % clay, 18 % silt and 15 % sand dominated by the clay fraction, with a pH of 7.5.

Experimental design, agronomic management practices and

This field experiment was laid out in a randomized complete block design with three replications. The plot size was 4.5 m x 5 m and with 25 cm and 75 cm between plants and rows. Maize varieties (Wenchi) was used. The treatments included eleven sole and integrated use of inorganic and vermicompost fertilizer rates. The treatments will include: (Zero input (control), recommended NPS vermicompost based on nitrogen equivalency (VBNE), 4 t/ha vermicompost, 6 t/ha vermicompost, 8 t/ha vermicompost, 10 t/ha vermicompost, 12 t/ha vermicompost 75% T3 + 25% RNPS, 50% T3 + 50% RNPS, 25% T3 + 75 % RNPS). Vermicompost, P and S were applied once at planting. Nitrogen from urea sources was applied two times half at knee height and half at tasseling maize. Hoeing and weeding were done as recommended for maize production in the area. The crop was harvested at its full maturity and shelled manually. Agronomic parameters such as height, dry biomass, thousand seed weight, harvest index and grain yield were collected at right stage the crop. The harvested grain yield was adjusted to 12.5 % moisture level (Biru, 1979 and Nelson et al., 1985). The adjusted seed yield at 12.5 % moisture level per plot was converted to grain yield as kilogram per hectare.

Statistical data analysis

The data analyses for agronomic data were carried out using statistical packages and procedures of SAS computer software (SAS, 2004). Mean separation was done using least significance difference (LSD) procedure at 5 % probability level (Steel and Torrie, 1980).

Economic analysis

Partial budget, value to cost ratio and marginal rate of return analysis, maize grain yield was valued at an average open market price of EB 650 per 100 kg. Labour cost for field operation was EB 28 per man-day. The yield was adjusted down by 10 % to reflect actual production conditions (CIMMYT, 1988). The cost of fertilizer (NPS, Urea and DAP) were EB 1400, 1090 and 1390 per 100 kg with current market price. Vermicompost price= 250 EB t⁻¹.

RESULTS AND DISCUSSION

Thousand seed weight and plant height of high land of maize

The mean thousand seed weight and plant height of high land of maize are indicated in Table 1. The mean thousand seed weight of highland maize was significantly (P<0.05) affected by application sole and integrated use of NPS fertilizer and vermicompost combined over years (Table 1). Significantly higher mean thousand weight of highland maize was obtained from application NPS followed by integrated use of NPS with Vermicompost and higher rate of vermicompost (Table 1). This indicates the easily release of nutrients from NPS fertilizer followed by integrated use of NPS and vermicompost and gradually release from higher rate of vermicompost which available for maize growth. Likewise, Abdissa et al. (2018) found interaction effect of lime, VC and mineral P fertilizer had highly significant effect on 1000-seed weight of maize with higher mean 1000-seed weight (508 g) was obtained with application of 2.5 t VC ha-1 and 40 kg P ha-1 and lime, while the lowest (255 g) was in the control which might be due to the synergistic effects of the combined effects of VC and lime in improving growth and grain filling of maize, the physicochemical and biological soil properties

Similarly, Mohsin et al. (2012) found application of 50% N from manure along with 50% N from mineral fertilizers produced maximum 1000-grain weight (279g). Likewise, Tesfaye (2017) reported combined application of compost and mineral fertilizers significantly affect ed thousand seed weight of maize. Significantly higher thousand seed weight (269 g) was recorded with combined application of 100 % NPK + vermicompost at 3 t ha⁻¹ followed by 100% NPK + FYM at 3 t ha⁻¹ (Shah and Wani, 2017). Application of vermicompost and chemical nitrogen fertilizer affects the 1000 seed weight of maize (Namazi et al., 2015). Athokpam et al. (2017) found higher 1000 grain weight (198 g) was produced under the application of 100 % NPK + Vermicompost 5 t ha⁻¹

The mean plant height of highland maize was significantly (P<0.05) affected by application of sole NPS, vermicompost and integrated use of NPS and vermicompost from 2015 to 2017 cropping seasons and combined over years in Vertisol of Ambo.

Table 1. Effects of NPS fertilizer and vermicompost rate on thousand seed weight and plant height, of high land of maize from 2015 to 2017 cropping season in Vertisol of Ambo

- 0 - 0					F F	0		
NPS and	Thou	isand se	eed wei	ght (g)	Plant height (cm)			
Vermicompost	2015	2016	2017	Mean	2015	2016	2017	Mean
(kg and t ha-1)								
0	344	313	372	343b	208c	196de	197de	200e
92/69/30 kg NPS	337	476	342	385a	228ab	249a	250a	242a
VBNE (92 kg N)	315	428	338	360ab	231a	221bcd	222bcd	224bc
4 t vermicompost	330	318	343	330b	228ab	196de	197de	207de
6 t vermicompost	340	347	343	343ab	222abc	197de	198de	205de
8 t vermicompost	316	392	335	348ab	214bc	220bcde	221bcd	218cd
10 t vermicompost	307	404	365	359ab	235a	208cde	209cde	217cd
12 t vermicompost	299	357	349	335b	235a	216cde	217cd	222bc
75 % T3 + 50%RNPS	342	418	354	371ab	232a	233abc	234abc	233ab
50 % T3 + 50%RNPS	308	400	370	359ab	226ab	247a	248a	240a
25 % T3 + 75%RNPS	320	348	363	344ab	236a	244ab	245ab	241a
LSD (5%)	NS	NS	NS	42	17.05	25.148	25.185	12.536
CV (%)	14.4	9.2	8.83	12.65	6.7	4.42	6.70	5.98

NS= non-significant difference at 5 % probability level, Numbers followed by same letter in the same column are not significantly different at 5 % probability level, VBNE=vermicompost based on N equivalency, R = recommended NPS.

Significantly higher mean plant height of highland maize was obtained from application of NPS followed by integrated use of NPS with Vermicompost and higher rate of vermicompost but the lower plant height highland of maize was obtained from non-fertilized maize fields. Likewise, Yadav et al. (2016) reported significantly higher (213cm) of maize was obtained from application of 5 t ha⁻¹ vermicompost +75% recommended dose of N.P.K as compared to control (193cm). Better performance of highland maize was obtained from easily and higher release of nutrients from applied fertilizer sources and rates. Similar result was reported by Habtamu et al. (2015) with integration of compost, nitrogen and Sulfur on maize; Adekayode and Ogunkoya (2010) reported significant difference in maize plant height with high fertilizer treated as compared to nil applied plots. Likewise, Rehman et al. (2016) reported plant height of maize with increasing rate of compost and mineral fertilizer rate could be due to their synergistic effects compost and mineral fertilizer (Tesfaye 2017). Likewise, Yadav et al. (2017) reported significant effects integrated nutrient management on plant height of maize.

Harvest index and stalk biomass of high land of maize

The mean harvest index and stalk biomass of highland of maize are indicated in Table 2. The mean harvest index of highland of maize was significantly (P<0.05) affected by

sole and integrated by application of NPS, vermicompost and integrated use of NPS with vermicompost in 2016, 2017 cropping seasons and combined over years in Vertisols of Ambo (Table 2). Significantly higher mean harvest index of highland of maize was obtained from application of NPS followed by integrated use of NPS with Vermicompost and higher rate of vermicompost but the lower harvest index of highland of maize was obtained from non-fertilized maize fields indicating better harvest index with higher release of available nutrients for highland maize. Similarly, harvest index of maize was significantly affected by integrated use of compost and NPSBZn chemical fertilizer (Tesfaye 2017). Likewise, Abdissa et al. (2018) found significantly higher mean harvest index of (24.4%) was obtained from application of 2.5 t VC ha⁻¹ and 40 kg P ha⁻¹ with lime, while the lowest (13.4%) was observed when only lime was applied without VC and mineral P fertilizer In India, Yadav et al. (2016) found significantly higher mean biological yield of (43.51%) maize was obtained from application of 5 t ha⁻¹ vermicompost +75% recommended dose of N.P.K as compared control (31.37%). Likewise, Syed *et al.* (2009) reported that harvest index was significantly affected by the organic and inorganic source of N. Dzomeku and Illiasu (2018) reported similar result on integration of organic material and NPK fertilizer. Application of vermicompost and chemical nitrogen fertilizer has positive and meaningful effect on the harvest index of maize (Namazi et al., 2015).

The mean stalk biomass of maize was significantly (P<0.05) affected by sole and integrated application of NPS and vermicompost in 2015 and 2017 cropping seasons (Table 2). Significantly higher mean stalk biomass of 12467 kg ha⁻¹ followed by 11898 kg ha⁻¹ was obtained from application of sole NPS and 50:50 recommended NPS with vermicompost based on N equivalency (Table 2).

Table 2	Effects of NPS fertilizer and vermicompost rate on harvest index and stalk biomass
	of highland of maize from 2015 to 2017 cropping season in Vertisol of Ambo

NPS and		Harvest i	ndex (%)	Stalk biomass (kg ha ⁻¹)			
Vermicompost								
(kg and t ha-1)								
	2015	2016	2017	Mean	2015	2016	2017	Mean
0	37.64	27c	33ab	33b	9999c	76023	6310c	30777
92/69/30 kg NPS	37.00	57a	33ab	42a	12375ab	94653	12467a	39832
VBNE (92 kg N)	35.77	43abc	31ab	37ab	12236ab	74585	7018c	31280
4 t vermicompost	37.08	31bc	27b	32b	10722d	74762	8500bc	31328
6 t vermicompost	34.52	31bc	38a	35b	10833d	75083	6000c	30638
8 t vermicompost	35.20	48ab	31ab	38ab	11773cd	68509	7181c	29154
10 t vermicompost	37.30	34bc	30ab	34b	11434bc	71525	7983c	30314
12 t vermicompost	35.24	38bc	29ab	34b	12453a	79304	8116c	33291
75 % T3 + 50%RNPS	36.85	38bc	31ab	35b	12596a	87522	7711c	35943
50 % T3 + 50%RNPS	35.78	42abc	31ab	36b	10939ab	96809	11898ab	39882
25 % T3 + 75%RNPS	38.27	45ab	30ab	38ab	12089	90880	8392bc	37120
LSD (5%)	NS	16.857	9.48	6.71	2115	NS	3545	NS
CV (%)	25	7.07	17.87	19.93	10.72	24.21	25	24.35

NS= non-significant difference at 5 % probability level, Numbers followed by same letter in the same column are not significantly different at 5 % probability level, VBNE=vermicompost based on N equivalency, R = recommended NPS.

Similarly, Tesfaye (2017) stover yield of maize was significantly affected by interaction of compost and inorganic fertilizer, with higher stover yield of (8.54 t ha⁻¹) was observed when 10 t ha⁻¹ compost was applied with combination of full recommended dose of mineral fertilizer. The easily and timely release of available nutrients had contributed for better stalk biomass performance of highland maize in Vertisols of Ambo.

Mean grain yield of highland of maize

The mean grain yield of highland maize is indicated in Table 3. The mean grain yield of

highland maize was significantly (P<0.05) affected application of NPS, by vermicompost, integrated use of NPS and vermicompost rate in 2015, 2016, 2017 and combined over years in Vertisols of Ambo (Table 3). Significantly lower mean grain vield of maize was obtained from nonfertilized plots as compared fertilized plots. Significantly higher combined mean grain vield of highland maize of 6187kg ha-1 followed 5193,5083 and 4746 kg ha-1 was obtained from sole application of NPS and integrated use of NPS with vermicompost rate (Table 3).

 Table 3. Effects of NPS fertilizer and vermicompost rate on grain yield of highland of maize from 2015 to 2017 cropping season in Vertisol of Ambo

NPS and Vermicompost (kg and t ha-1)						
	2015	2016	2017	Mean		
0	5999bc	1938f	2911c	3616e		
92/69/30 kg NPS	7274ab	5112a	6176a	6187a		
VBNE (92 kg N)	6813abc	3219cde	3124c	4385cde		
4 t vermicompost	6326abc	2414ef	3162c	3967de		
6 t vermicompost	5761c	2407ef	3846bc	4005de		
8 t vermicompost	6351abc	3334cd	3163c	4283de		
10 t vermicompost	6777abc	2514def	3472c	4254de		
12 t vermicompost	6784abc	3049cde	3286c	4373de		
75 % T3 + 50R NPS	7357ab	3459bc	3421c	4746bcd		
50 % T3 + 50 RNPS	6092abc	4210b	5278ab	5193b		
25 % T3 + 75RNPS	7480a	4179b	3590c	5083bc		
LSD (5%)	1462	836.13	1642	799		
CV (%)	15.1	12.9	25.61	18.64		

Numbers followed by same letter in the same column are not significantly different at 5 % probability level, VBNE=vermicompost based on N equivalency, R = recommended NPS.

This indicates the faster release of available nutrients from NPS fertilizer had significant contribution for better grain yield of maize as compared to the slow gradually release of nutrients from vermicompost. Sole application of vermicompost gave similar yield with different rates across years (Table 3). Application of 50: 50 % vermicompost based on N equivalency with recommended NPS fertilizer rate gave better grain yield of maize following recommended NPS fertilizer indicating greater contribution of vermicompost in nutrient release for maize and reducing the amount of NPS fertilizer for maize production. Similarly, Yadav et al. (2016) found significantly higher mean grain yield of (4.77 t ha⁻¹) was obtained from application of 5 t ha⁻¹ vermicompost +75% recommended dose of N.P.K in India. It saved the cost chemical fertilizer for maize production. Integrated use of organic and mineral fertilizers resulted in vield, environmental and economic benefits as compared to using alone. Likewise, Abdissa et al. (2018) combined use of vermicompost at 2.5 t ha-1 and chemical P fertilizer at 20 kg ha-1 with lime at 4 t ha-1 was produced significantly higher mean grain yield (4.87 t ha-1) was obtained with application of 40 kg P ha⁻¹ and 2.5 t VC ha⁻¹ with lime, while the lowest (2.18 t ha-1) was from control in strongly acidic soils. Tilahun et al. (2013) also verified that integrated fertilizers application gave the maximum grain yield compared to the control. Similar results were reported by Wakene et al. (2005); Habatmu et al. (2015); Mahmood et al. (2017). Several studies Liu et al. (2009); Yu et al., (2012); Cavagnaro (2014); Xie et al. (2014); Molina-Herrera and Romanya (2015); Srivastava et al. (2015, 2016); Wang et al. (2015); Ling et al. (2016) reported that organic amendments have improved soil physical, chemical, and biological properties, providing essential plant nutrients to stimulate plant growth and yield. Combined organic and inorganic fertilizers increased significantly the expected and obtained yields for maize and soybean intercropping (Muyayabantu et al., 2013). Likewise, Rodriguez- Vila et al. (2016) found that organic amendments sustain soil properties by increasing OM, nutrient content, microbial activity and thus increase crop growth and yield. Similarly, Mohsin et al. (2012) found application of 50% N from manure along with 50% N from mineral fertilizers produced higher grain yield (5793 kg ha⁻¹). Higher maize grain yield was obtained from the application of 10 tons ha-1 compost and full recommended mineral fertilizer rate 150 kg NPSBZn ha-1 + 200 kg 100 % NPK + S + Zn and 150 % NPK (Athokpam et al., 2017). The higher grain vield of maize in integrated use of vermicompost and NPS fertilizer might be due to better nutrient use efficiency of maize which is in agreement with Matsui et al. (2016) found nitrogen use efficiency (NUE) was greatly improved 2 to 5 times larger when chemical fertilizer (46 kg N) was

Urea ha⁻¹ (Tesfaye, 2017). He further stated that grain yield of maize was increased by 81% due to the combined application of compost and mineral fertilizer over the control. Likewise, Taffesse et al. (2011) reported applying FYM at 15 t ha-1 with 120/20 kg NP ha⁻¹ responded the maximum grain yield which increased by 123 % compared to the control. Mugwe et al. (2007) also reported higher maize yields in treatments of compost either alone or in combination with mineral fertilizer were applied compared to the control. Maximum grain yield of (3.26 t ha-1) was recorded with combined application of 100 % NPK + vermicompost at 3 t ha-1 followed by 100% NPK + FYM at 3 t ha-1 (Shah and Wani, 2017). Correspondingly, N'Dayegamiye et al. (2010) who reported that application of compost with 120 kg N ha-1 led to high maize yields. Significantly higher seed yield of maize was obtained from application 5 t ha-1 vermicompost together with 75% nitrogen while the lowest from combination of 10 t ha-1 vermicompost and 50 % nitrogen fertilizer (Namazi et al., 2015). Similar finding was reported by Sadeghi and Bahrani (2009).

Combined application of both organic and inorganic sources to take care of maize nutrition more effectively leading to better productivity (Yadav et al., 2016). Integration of organic material and NPK fertilizer significantly increased mean grain yield maize with higher grain yield of maize (4781 kg ha-1) at 7.5 t ha-1 groundnut shell plus 90-60-60 kg NPK ha-1 (Dzomeku and Illiasu, 2018). Higher maize grain yield was obtained in treatment having NPK with FYM Babbu et al. (2015). Yadav et al. (2017) also reported similar result. Higher grain yield (38 q ha-1) was produced by application of 100 % NPK + Vermicompost 5 t ha-1 and its performance was at par with applied mixed with compost which have direct influence on yield of maize. Sanginga and Woomer (2009); Vanlauwe et al. (2010) reported integrated Soil Fertility Management (ISFM) options for increasing soil fertility and agronomic efficiency of applied inputs. Vermicompost integrated with inorganic fertilizers were efficiently used by maize crop for their growth and

development and also maintained soil fertility and increased yield of the crop (Sanjivkumar, 2014). Athokpam et al. (2017) found higher available nitrogen (499 kg ha-1), phosphorus (34.08 kg ha-1) was obtained from plots receiving 100 % NPK + Vermicompost 5 t ha-1, while maximum potassium (338 kg ha-1) from treatment receiving 150 % NPK. Similar results in respect of N, P and K status of soil also reported by Tetarwal et al., (2011). Shah and Wani (2017) reported integrated nutrient management strategy revealed that application of full dose of inorganic fertilizers along with vermicompost at 3 t ha-¹ to maize not only enhanced productivity of Table 4. Effects of NPS fertilizer and

vermicompost rate on biomass yield of highland of maize from 2015 to 2017 cropping season in Vertisol of Ambo

NPS and Vermicompost (kg and t ha⁻¹) 0 92/69/30 kg NPS VBNE (92 kg N) 4 t vermicompost 6 t vermicompost 8 t vermicompost 10 t vermicompost 12 t vermicompost 75 % T3 + 50 R NPS 50 % T3 + 50 R NPS 25 % T3 + 75 R NPS LSD (5%) CV (%)

NS= non-significant difference at 5 % probability level, Numbers followed by same letter in the same column is not significantly different at 5 % probability level, VBNE=vermicompost based on N equivalency, R = recommended NPS.

Significantly higher biomass yield of highland maize of 46019 kg ha⁻¹ was obtained from sole application of NPS fertilizer followed by integrated use of NPS with vermicompost fertilizer rates combined maize by 90% and 13.4% over the control and Recommended NPK, respectively, but also improved soil fertility in terms of higher available N, P and organic carbon.

Mean dry biomass yield of high land of maize

The mean dry biomass yield of highland maize is indicated in Table 4. The mean biomass yield of highland maize was significantly (P<0.05) affected by application of sole NPS, vermicompost and integrated use of vermicompost with NPS in 2015, 2017 cropping seasons and combined over years

over years as compared other rates (Table 4). This indicates easier release of nutrients from inorganic NPS fertilizer and combination of NPS with vermicompost could enhance the biomass yield of highland maize as paragarantes (Readaually release of nutrients from sole vermicompost rates. 2015 2016 2017 Similarly, Monsin et al. (2012) found 15998 ation 77950% N9723 b mast 1393 blong 19749ab50% 99765from186Aniperal 4fertilizers produced maximum biological yield (14880 1804Rabh. Significantly higher mean biomass 17049abot (12778176ha-1)11662ke was52960bded with the application 9846b higher 4643bc of vermicompost and mineral P along with 18124abwhile the minimum (5.02 t Rath)⁷ from 18211280 with 4089 differen 55 b of 34668 b da-1 (Abdissa et al. 2018), Significantly, higher (14.9 t ha-1) dry biomass of maize was 122572 ded in 909180 treatest bwith 40688 abha-1 170911apst and 02 full 179750 amend 50 from b of mineral fertilizer, while the lowest (2.16.t ha-19569ab 95059 11982b 42203abc 1) in the control with a difference of 12.74 t ha¹⁹⁷(Tesfaye, N2017). Karainja et 11.082010) reported that total dry motter of maize was higher in treatment combinations of inorganic and organic fertilizers than chemical fertilizers alone. Similarly, Yadav et al. (2016) found significantly higher mean biological yield of (10.56 t ha-1) maize was obtained from application of 5 t ha-1 vermicompost +75% recommended dose of N.P.K as compared control (7.76 t ha-1) in India. Application 5 t ha-1 vermicompost gave together with 75% nitrogen significantly higher biological yield of maize (12,566 kg ha-1) while the lowest (9890 kg ha-

1) was from combination of 10 t ha-1 vermicompost and 50 % nitrogen fertilizer (Namazi et al., 2015). Similar result was reported by (Dzomeku and Illiasu, 2018; Yadav et al., 2017). Integrated use of vermicompost and NPS fertilizer significantly improved biomass yield of maize. Likewise, Dzomeku and Illiasu (2018) stated combination of organic matter and inorganic NPK fertilizer could play a more role enhancing significant in and replenishing soil nutrients and sustained maize production.

Integrated use of NPS fertilizer and Vermicompost on economic profitability of highland maize production

Application of 92/69/30 kg NPS ha⁻¹ gave the highest net return of EB 32265 with highest marginal rate return of 713 % with values to cost ratio of EB 8.21 profit per unit investment for maize production in vertisols of Ambo followed by net return of EB 27167 and marginal rate return of 295 % with values to cost ratio of EB 8.45 profit per unit investment for highland maize production was obtained from application of 50:50 % recommended NPS with vermicompost based on N equivalency (Table 5).

Table 5.	Effects	of	NPS	fertilizer	and	vermicompost	rate	on	economic	profitability	of
	highlanc	l of	maize	e producti	on at	Ambo					

Treatments	Items								
(t VC and kg NPS ha ⁻¹)	Grain	Adjusted	Gross	TVC	Net	Value	MRR		
	yield	Grain	field	(EB	benefit	to	(%)		
	(kg ha-1)	yield	benefit	ha-1)	(EB ha-1)	cost			
		(kg ha-1)	(EB ha-1)			ratio			
0	3616	3254	21153	0	21153				
4 t vermicompost	3968	3571	23211	1000	22211	22.21	106		
6 t vermicompost	4005	3604	23428	1250	22178D	17.74			
8 t vermicompost	4283	3854	25054	1500	23554	15.70	268		
10 t vermicompost	4254	3829	24887	1750	23137D	13.22			
12 t vermicompost	4373	3936	25583	2000	23583	11.79	6		
VBNE (92 kg N)	4385	3947	25654	2500	23154D	9.26			
50 % T3 + 50 % R NPS	5193	4674	30382	3215	27167	8.45	295		
25 % T3 + 75% R NPS	5083	4575	29736	3573	26163D	7.32			
75 % T3 + 50 % R NPS	4746	4271	27762	3840	23922D	6.23			
92/69/30 kg NPS	6187	5568	36195	3930	32265	8.21	713		

D= dominated, TVC= Total variable cost, MRR= Marginal rate of return, maize grain price = 6.5 EB kg⁻¹, NPS=14 EB kg⁻¹, DAP= 13.9 EB kg⁻¹, Urea price= 10.90 EB kg⁻¹, Vermicompost price= 250 EB t⁻¹, Labour cost= 28 EB day⁻¹, VBNE=vermicompost based on N equivalency, R = recommended NPS

Similarly, Tesfaye (2017) application of 10 t ha⁻¹ compost and full of the recommended mineral fertilizer rate (150 kg NPSBZn ha⁻¹ and 200 kg ha⁻¹ urea) was found to be economical feasible for maize production. Significantly higher net return was obtained in 5 t ha⁻¹ vermicompost +75% recommended dose of N.P.K (Yadav et al., 2016). Combined use of vermicompost at 2.5 t ha⁻¹ and chemical P fertilizer at 20 kg ha⁻¹

with lime at 4 t ha⁻¹ is economically optimum for maize production in acid soil (Abdissa et al., 2018). Therefore, application of recommended NPS or 50:50 % recommended NPS with vermicompost based on N equivalency was recommended for better maize production and economic return in Vertisols of Ambo District, west Showa.

CONCLUSION

Application of sole and integrated use of vermicompost and NPS fertilizer rate were significantly affected yield and yield components of highland maize variety. Significantly higher (6187 kg ha-1) was obtained with application of 92/69/30 kg NPS ha-1 followed by (5193 kg ha-1) with 50:50 vermicompost based on N equivalency and NPS fertilizer rate. Application of 92/69/30 kg NPS ha-1 gave the highest net return of EB 32265 with highest marginal rate return of 713 % followed by net return of EB 27167 and marginal rate return of 295 % for highland maize production was obtained from application of 50:50 % recommended NPS with vermicompost based on N equivalency in Vertisols of Ambo. Thus application of 92/69/30 kg NPS ha-1 and 50:50 % recommended NPS with vermicompost based on N equivalency produced better grain yield and economical feasible for maize production Therefore, application of 92/69/30 kg NPS ha-1 and 50:50 % recommended NPS with vermicompost based on N equivalency were recommended highland for maize production in Vertisol of Ambo and similar agro-ecologies in western Oromia.

ACKNOWLEDGEMENTS

First, I would like to thank the almighty God who lives us and lead us to see seed of my work. The authors thank Natural Resources Management Research Process for funding the experiment. I am very grateful to Ambo Agricultural Research center management for providing all necessary equipment's and logistics during the research work. All the technical and field assistants of Natural Resources Management Research Process are also acknowledged for unreserved effort during executing the experiment. I want to thank Desalegn Hordofa for providing us land for field research work and their assistance in field management too.

REFERENCES

Abdissa, B, Kibebew, K, Bobe, B, Tesfaye, B and Markku, YH. 2018. Effects of lime, vermicompost and chemical P fertilizer on yield of maize in Ebantu District, Western highlands of Ethiopia. African J.of Agric. Res. 13(10): 477-489.

- Ahmad, P, Wani, MR, Azooz, MM and Tran, Lam-SonP. (Eds.) 2014. Improvement of Crops in the Era of Climatic Changes. 2nd edition. Springer New York Heidelberg Dordrecht London. DOI 10.1007/978-1-4614-8824-8 380pp.
- Adekayode, FO and Ogunkoya, MO. 2010. Effects of quantity and placement distances of inorganic 15-15-15 fertilizer in improving soil fertility status and the performance and yield of maize in a tropical rain forest Zone of Nigeria. J. soil Sci. Envir. Manag. 1:155-163.
- Akinola, AA, Alene, AD, Adeyemo, R, Sanogo, D and Olanrewaju, AS. 2009. Economic impacts of soil fertility management research in West Africa. Africa J.Agri. Res. 3 (2): 159-175.
- Alobo, LS. 2015. Rural livelihood diversification in sub-Saharan Africa: A literature review. The J. of Devel. Studies. 51: 1125-1138.
- Athokpam, H, Telem RS and Wani, SH. 2017. Integrated Nutrient Management for Sustainable Maize (Zea mays L.) Production in Acidic Soil of Senapati District, Manipur, India. Int. J. of Current Micro. and Applied Sci. 6(7): 690-695.
- Babbu, SB, Jagdeep, S, Gurbir, S and Gurpreet, K. 2015. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize-Wheat Rotation. Agron. 5:220-238.
- Badiane, O and Collins, J. 2016. Agricultural growth and productivity in Africa: Recent trends and future outlook. pp. 3-30. In: Lynam J. Beintema NM. Roseboom J. and Badiene O. (Eds.) Agricultural research in Africa: Investing in future harvest. Washington, DC: International Food Policy Research Institute.
- Bationo, A and Waswa, BS. 2011. New challenges and opportunities for integrated soil fertility management in Africa. In: Bationo A. Waswa B. Okeyo JM. Maina F. and Kihara J. (Eds.) Innovation as Key to the Green Revolution in Africa. Exploring the Scientific Facts, Vol 1. New York, NY: Springer.
- Bello, W. 2012. Influence of Gypsum application on Wheat (Triticum aestivum) yield and Components on Saline and Alkaline Soils of Tigray region, Ethiopia. Greener J. of Agric. Sci. 2: 316-322.

- Birru, A. 1979. Agricultural Field Experiment Management Manual Part III. IAR (Institute of Agricultural Research). Addis Ababa, Ethiopia, pp. 35-42.
- Carranca, C. 2012. Nitrogen use efficiency by annual and perennial crops. In: Farming for Food and Water Security. pp. 57-82. In: Lichtfouse E. (Eds.) Springer Science + Business Media: Dordrecht, The Netherlands.
- CIMMYT 1988. From Agronomic Data to Farmer Recommendations: An Economics Training Manual. 79pp.
- CSA 2016. Agricultural Sample Survey 2015/16. I. Report on Area and Production for Major Crops. Statistical Bulletin 579. Addis Ababa, Ethiopia.
- Dzomeku, IK and Illiasu, O. 2018. Effects of Groundnut Shell, Rice Husk and Rice Straw on the Productivity of Maize (Zea mays L.) and Soil Fertility in the Guinea Savannah Zone of Ghana. Acta Sci. Agric. 2 (3): 29-35.
- FAO 2015. Soil is a non-renewable resource: Data for 2000-2005. 4 pp.
- FAO state 2015. The FAO Statistical Pocketbook 2015: World Food and Agriculture, 236pp.
- Getachew, A and Tilahun, A. 2017. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: a review. Pedos.27(4):662-680.
- Getachew, A, Berhane, L and Paul, NN. 2014a. Cropping sequence and nitrogen fertilizer effects on the productivity and quality of malting barley and soil fertility in the Ethiopian highlands. Arch Agron. Soil Sci. 60(9):1261-1275.
- Gete, Z, Getachew, A, Dejene, A and Shahidur, R. 2010. Fertilizer and soil fertility potential in Ethiopia: Constraints and opportunities for enhancing the system. IFPRI, Addis Ababa, Ethiopia.
- Habtamu, A, Heluf, GK, Bobe, B and Enyew, A. 2015. Effects of organic and inorganic fertilizers on yield and yield components of maize at Wujiraba watershed, Northwestern highlands of Ethiopia. American J. of Plant Nutr. and Fert. Techn. 5(1):1-15.
- Heluf, GK, Asfaw, B, Yohannes, U and Eylachew, Z. 1999. Yield response of maize (Zea mays L.) to crop residue management on two major soil types of Alemaya, eastern Ethiopia: I. Effects of varying rates of applied and residual NP fertilizers. Nutr. Cycling Agroecosys. 54: 65-71.

- Kherallah, M, Delgado, C, Gabre-Madhin, E, Minot, N and Johnson, M. 2002. Reforming Agricultural Markets in Africa, Volume 50. Baltimore, Maryland: The Johns Hopkins University Press.
- Kone, B, Amadji, GL, Aliou, S, Diatta, S and Akakpo, C. 2011. Nutrient constraint and yield potential of rice on upland soil in the south of the Dahoumey gap of West Africa. Archives of Agron. and Soil Sci. 57: 763-774.
- Mahmood, F, Khan, I, Ashraf, U, Shahzad, T, Hussain, S, Shahid, M, Abid, M and Ullah, S. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutri. 17(1):22-32.
- Matsui, N, Nakata, K, Cornelius, C and Macdonald, M. 2016. Improvement of maize yield and soil fertility by 2-years compost application in Malawi's northern districts. African J. of Agric. Res.11(30): 2708-2719.
- Mohsin, AU, Ahmad, J, Ahmad, AUH, Ikram, RM and Mubeen, K. 2012. Effect of nitrogen application through different combinations of urea and farm yard manure on the performance of spring maize (Zea mays L.). J. of Animal and Plant Sci. 22: 195-198.
- Mosisa, W, Legesse, W, Berhanu, T, Girma, D. Girum, A, Wende, A, Tolera, K, Gezahegn, B, Dagne, W, Solomon, A, Habtamu, Z, Kasa, Y, Temesgen, C, Habte, J, Demoz, N and Getachew, B. 2011. Status and future direction of maize research and production in Ethiopia. pp: 17-23. In Mosisa W, Twumasi-Afriyie S, Legesse W, Berhanu T, Girma D, Gezehagn B, Dagne W and Prasanna BM, (Eds.) Proceedings of the Third National Maize Workshop of Ethiopia. EIAR/CIMMYT, Addis Ababa, Ethiopia.
- Mugwe, J, Mugenda, D, Kungu, J and Mucheru-Muna, M. 2007: Effects of plant biomass, manure and inorganic fertilizer on maize yield in the Central Highlands of Kenya. African Crop Sci. J. 15(3): 111-126.
- Mugwe, J, Mugendi, D, Mucheru-Muna, M, Merckx, R, Chianu, J and Vanlauwe, B. 2009. Determinants of the decision to adopt integrated soil fertility management practices by smallholder farmers in the Central highlands of Kenya. Experi. Agric. 45:61–75.
- Murwira, HK, Mutuo, PK, Nhamo, N, Marandu, AE, Rabeson, R, Mwale, M and Palm, CA. 2002. Fertilizer equivalency values of organic materials of different quality. pp. 113–152 In

Vanlauwe B, Diels J, Sanginga N and Merckx R, (Eds.) Integrated Plant Nutrients Management in Sub-Saharan Africa: From Concept to Practice, Wallingford, UK: CAB International.

- Muyayabantu, GM, Kadiata, BD and Nkongolo, KK. 2013.Assessing the Effects of Integrated Soil Fertility Management on Biological Efficiency and Economic Advantages of Intercropped Maize (Zea Mays L.) and Soybean (Glycine Max L.) in DR Congo. American J. of Exp. Agric. 3(3): 520-541.
- Namazi, E, Lack, S and Nejad, EF. 2015. Effect of Vermicompost and Chemical Nitrogen Fertilizer Application on the Various Functioning of Maize Seeds. J. of Exp. Biol. and Agric. Sci. 3(3): 261-268.
- N'Dayegamiye, A, Nyiraneza, J, Chantigny, H and Laverdière, R. 2010. Long-term manure application and forages reduce nitrogen fertilizer requirements of silage corn-cereal cropping systems. Agron. J. 102: 1244-1251.
- Nelson, LA, Voss, RD and Pesek, J. 1985. Agronomic and statistical evaluation of fertilizer response. 89 pp.
- Raun, WR and Johnson, GV. 1999. Review and interpretation improving nitrogen use efficiency for cereal production. Agron. J. 91: 357-363.
- Rehman, MZU, Rizwan, M, Ali, S, Fatima, N, Yousaf, B, Naeem, A, Sabir, M, Ahmad, HR and Ok, YS. 2016. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxi. and Envir. Safety. 133: 218-225.
- Rodriguez-Vila, A, Asensio, V, Forjan, R and Covelo, EF. 2016. Carbon fractionation in a mine soil amended with compost and biochar and vegetated with Brassica juncea L. J. of Geoche. Explo. 169: 137–143.
- Roychowdhury, D, Mondal, S and Banerjee, SK. 2017. The Effect of Biofertilizers and the Effect of Vermicompost on the Cultivation and Productivity of Maize: A Review. Adv. in Crop Sci. and Techn. 5: 261. doi: 10.4172/2329-8863.1000261.
- Sadeghi, H and Bahrani, MJ. 2009. Effects of Crop Residue a Nitrogen Rates on Yield and Yield Components of Two Dryland Wheat (Triticum aestivum L.) Cultivars". Plant Production Sci. 12 (4): 497-502.

- Sanginga, N and Woomer, PL. (Eds.). 2009. Integrated Soil Fertility Management in Africa: Principles, Practices and Development Process. Nairobi, Kenya: Tropical Soil Biology and Fertility Institute of the Centre for Tropical Agriculture, 263 pp.
- Sanjivkumar, V. 2014. Effect of integrated nutrient management on soil fertility and yield of maize crop (Zea mays) in Entic Haplustart in Tamil Nadu, India. J. Applied and Natu. Sci. 6(1): 294-297.
- SAS 2004. SAS/STAT Software Syntax, Version 9.0. SAS Institute, Cary, NC. USA.
- Sekumade, AB. 2017. Economic Effect of Organic and Inorganic Fertilizers on the Yield of Maize in Oyo State. Nigeria. Inter. J. of Agric. Econo. 2(3): 63-68.
- Shah, RA and Wani, BA. 2017. Yield, Nutrient Uptake and Soil Fertility of Maize (Zea Mays L.) as Influenced by Varying Nutrient Management Practices Under Temperate Conditions of Kashmir Valley, India. Plant Archives. 17(1): 75-78.
- Srivastava, P, Raghubanshi, AS, Singh, R and Tripathi, SN. 2015. Soil carbon efflux and sequestration as a function of relative availability of inorganic N pools in dry tropical agroecosystem. Applied Soil Ecol. 96:1–6.
- Srivastava, P, Singh, R, Bhadouria, R, Tripathi, S, Singh, P, Singh, H and Raghubanshi, AS. 2016. Organic amendment impact on SOC dynamics in dry tropics: a possible role of relative availability of inorganic-N pools. Agric. Ecosy. and Envir. 235: 38-50.
- Steel, RGD. and Torrie, JH. 1980. Principles and procedures of statistics: a biometrical approach. 2nd Edition. McGraw-Hill. New York. 631pp.
- Sutton, MA, Bleeker, A, Howard, CM, Bekunda, M, Grizzetti, B, de Vries, W, van Grinsven, HJM, Abrol, YP, Adhya, TK, Billen, G, Davidson, EA, Datta, A, Diaz, R, Erisman, JW, Liu, XJ, Oenema, O, Palm, C, Raghuram, N, Reis, S, Scholz, RW, Sims, T, Westhoek, H and Zhang, FS. 2013. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. Edinburgh, UK. 128 pp.

- Syed, T, Shahid, MI, Waseem, M, Asghar, A, Tahir, M and Waleed, B. 2009. Growth and Yield Response of Maize (Zea mays L.) to Organic and Inorganic Sources of Nitrogen. Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.
- Taffesse, AS, Dorosh, P and Asrat, S. 2011. Crop production in Ethiopia: Regional patterns and trends. ESSP II Working Paper No. 16, Development Strategy and Governance Division, International Food Policy Research Institute, Ethiopia Strategy Support Program II, Ethiopia, pp: 1-27.
- Tesfa, B, Tolera, A, Tewodros, M, Gebresilasie, H, Temesgen, D, Tenaw, W, Waga, M and Hussen, H. 2012. Review on crop management research for improved maize productivity in Ethiopia. pp. 105-114. In Meeting the Challenges of Global Climate Change and Food Security through Innovative Maize Research. Proceedings of the Third National Maize Workshop of Ethiopia. Addis Ababa, Ethiopia.
- Tesfaye, B. 2017. Effect of Integrated Fertility Management on Soil Physicochemical Properties and Yield and Yield Components of Maize (Zea Mays L.) and Tef (Eragrostis Tef) at Yilmana Desnsa District, Northwestern Ethiopia. M.Sc. Thesis. Bahir Dar University. 116pp.
- Teterwal, JP, Ram, B and Meena, DS. 2011. Effect of INM on productivity, profitability, nutrient uptake and soil fertility in rainfed maize (Zea mays). Indian J. Agron. 56: 373-376.
- Tilahun, T, Nigussie, D, Wondimu, B and Setegn, G. 2013. Effect of farmyard manure and inorganic fertilizers on the growth, yield and moisture stress tolerance of rain-fed lowland rice. American J. Res. Commun. 1(4):275-301.
- Tittonell, P, Muriuki, A, Klapwijk, CJ, Shepherd, KD, Coe, R and Vanlauwe, B. 2013. Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Sci. Soc. of America J. 77: 525-538.
- Tolera, A. 2016. Maize Response to Fertilizer Application in Ethiopia. Ethiopian J. of Natu. Reso. 16(1&2): 25-41.
- Tolera, A, Daba, F, Hasan, Y, Olani, N and Al-Tawaha, AR. 2005. Grain yield of maize as affected by biogas slurry and N-P fertilizer rate at Bako, Western Oromia, Ethiopia. Bioscience Res. 2(1):31-37.

- Tolera, A, Tolessa, D and Dagne, W. 2017.Effects of Varieties and Nitrogen Fertilizer on Yield and Yield Components of Maize on Farmers field in Mid-Altitude Areas of Western Ethiopia. Inter. J. of Agron.. https://doi.org/10.1155/2017/4253917: 1-13.
- Tolessa, D. 1999. Effects of organic and inorganic fertilizers on maize grain yield in western Ethiopia. pp. 229-102. In Proceeding of the African Crop Science Conference, 10-14 October 1992. Vol. 4. Casablanca, Mali.
- Umesha, S, Srikantaiah, M, Prasanna, KS, Sreeramulu, KR, Divya M, and Lakshmipathi, RN. 2014. Comparative Effect of Organics and Biofertilizers on Growth and Yield of Maize (Zea mays. L). Current Agric. Res. J. 2: 55-62.
- Valbuena, D, Tui, SHK, Erenstein, O, Teufel, N, Duncan, A, Abdoulaye, T, Swain, B, Mekonnen, K, Germaine, I and Gérard, B. 2014. Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia. Agric. Sys. 134: 107-118.
- Vanlauwe, B, Six, J, Sanginga, N and Adesina, AA. 2015. Soil fertility decline at the base of rural poverty in sub-Saharan Africa. Nati. Plants. 1: 15101. http://dx.doi.org/10. 1038/nplants.2015.101.
- Vanlauwe, B, Aihou, K, Aman, S, Iwuafor, ENO, Tossah, B, Diels, J, Sanginga, N, Lyasse, O, Merckx, R and Deckers, S. 2001. Maize yield as affected by organic inputs and urea in the West African moist savanna. Agron. J. 93: 1191–9.
- Vanlauwe, B, Bationo, A, Chianu, J, Giller, KE, Merckx, R, Mokwunye, U, Ohiokpehai, O, Pypers, P, Tabo, R, Shepherd, KD, Smaling, EMA, Woomer, PL and Sanginga, N. 2010. Integrated soil fertility management. Operational definition and consequences for implementation and dissemination. Outlook on Agric. 39:17–24.
- Vanlauwe, B, AbdelGadir, AH, Adewopo, J, Adjei-Nsiah, S, AmpaduBoakye, T, Asare, R, Baijukya, F, Baars, E, Bekunda, M, Coyne, D, Dianda, M, DontsopNguezet, PM, Ebanyat, P, Hauser, S, Huising, J, Jalloh, A, Jassogne, L, Kamai, N, Kamara, A, Kanampiu, F, Kehbila, A, Kintche, K, Kreye, C, Larbi, A, Masso, C, Matungulu, P, Mohammed, I, Nabahungu, L, Nielsen, F, Nziguheba, G, Pypers, P, Roobroeck, D, Schut, M, Taulya, G, Thuita, M, Uzokwe, VNE, van Asten, P, Wairegi, L, Yemefack, M and Mutsaers, HJW. 2017. Looking back and moving forward: 50 years

of soil and soil fertility management research in sub-Saharan Africa. Inter. J. of Agric. Susta. DOI: 10.1080/14735903.2017.1393038.

- Veiga, A, Delly, R, Garcia, Von P and Luciane, VR. 2012. Quantitative trait loci associated with resistance to gray leaf spot and grain yield in corn. Ciênc. Agrotec, Lavras. 36(1):31-38.
- Wakene, N, Heluf, GK and Friesen, DK. 2005 Integrated use of farmyard manure and NP fertilizers for maize on farmers' fields. J. Agric. Rural Devel. Tropics. 106(2):131-141.
- Wakene, N, Kefalew, N, Friesen, DK, Ransom, J and Abebe, Y. 2004a. Determination of optimum Farmyard manure and NP fertilizers for maize on farmer's fields. In: Proceedings of the Seventh Eastern and Southern African Regional Maize Conference. Integrated Approaches to higher maize productivity in the new millennium. 5-11 February 2001, Nairobi, Kenya: CIMMYT. pp. 387-393.
- Wakene, N, Tolera, A, Friesen, DK, Abdenna, D and Berhanu, D. 2004b. Evaluation compost for maize production under farmers' conditions. In Integrated Approaches to higher maize productivity in the new millennium: Proceedings of the Seventh Eastern and Southern African Regional Maize Conference, 5-11 February 2002, Nairobi, Kenya: CIMMYT. (International Maize and Wheat Improvement Center) and KARI (Kenya Agricultural Research Institute).
- Wakene, N, Fite, G, Abdena, D and Berhanu D. 2007. Integrated use of organic and inorganic fertilizers for maize production. In Utilization of diversity in land use systems: Sustainable and organic approaches to meet human needs. Conference Tropentag 2007, October 9-12, 2007, Witzenhousen, Kassel, Germany.
- Wang, J, Zhu, B, Zhang, J, Muller, C and Cai, Z. 2015. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. and Bioch. 91: 222-231.
- Xie, H, Li, J, Zhu, P, Peng, C, Wang, J, He, H and Zhang, X. 2014. Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol. Soil Biol. and Bioch. 78: 45-53.
- Yadav, AK, Chand, S and Thenua, OVS. 2016. Effect of Integrated Nutrient Management on Productivity of Maize with Mungbean Intercropping. Global J. of Biosc. and Bioteh. 5 (1): 115-118.

- Yadav, AK, Nagdeote, VG, Raut, RG and Nagrare, IM. 2017. Effect of Integrated Nutrient Management on Growth, Yield and Economics Maize. J. of Soils and Crops. 27 (1): 178-182.
- Yu, HY, Ding, WX, Luo, JF, Donnison, A and Zhang, JB. 2012. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag. 28: 347-360.
- Zebider, A. 2011. The contribution of biogas production from cattle manure as household energy and soil fertility improvement. Addis Ababa, Ethiopia.
- Zelalem, B. 2014. Evaluation of enriched farmyard manure and inorganic fertilizers profitability in hybrid maize (BH 140) production at west Hararghe zone, eastern Ethiopia. J. of Genetic and Envir. Reso. Conser. 2(1): 83 89.